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Topics to Learn (Microsoft Learn)
1. Basics (refresher)

2. Azure Data Lake Storage 

3. Data Factory

4. Azure Databricks

5. Azure Synapse Analytics

6. Azure Stream Analytics

7. Event Hubs

8. Azure Monitor

Notes link

Notes link

Notes link

Notes link

Notes link

Notes link

Notes link

Notes link

Sites/ Courses followed:
1. Microsoft Learn Path- Link

2. Udemy Course by Eshant Garg (link) and Alan Rodrigues (link)

3. Practice Labs from Microsoft- Link
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✅ Basics
1. Data Types

2. Avro vs ORC vs Parquet

3. Availability Zones

4. OLTP vs OLAP

5. Data Lake vs Data Warehouse

6. Big Data Architecture

7. Partitioning Strategies

✅ Data Types
Data is a collection of facts such as numbers, descriptions, and observations used to 
record information. We can classify data as structured, semi-structured, or unstructured.

Structured
Data that adheres to a 
fixed schema, i.e. all of the 
data has the same fields or 
properties. This means the 
data structure is designed 
before any information is 
loaded into the system. Eg. 
Tabular data, CSV, 
spreadsheets

Semi-Structured
Data that has some 
structure but allows for 
some variation i.e 
doesn’t fit neatly into 
tables such as NoSQL, 
JSON, XML, YAML etc

Unstructured
Data that doesn’t have a 
specific structure such as 
documents, images, audio, 
video data, log data, and 
binary files.

✅ Optimized file formats for Storage
While human-readable formats for structured and semi-structured data can be useful, 
they're typically not optimized for storage space or processing. Some common optimized 
file formats include Avro, ORC, and Parquet:

Avro  
Row-based 

• Writing new records is easy (efficient) 
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• Reading parts of the records will involve 
reading the entire record thus being more 
memory intensive. (not efficient)

Avro format works well with a message bus such as Event Hubs or Kafka that writes 
multiple events/messages in succession. Also good for workloads having a lot of ETL 
jobs, thus best for landing/raw zone.

ORC (Optimized
 Row 
Columnar 
format)

• Writes are not efficient 
• Reads are efficient 
• Highly efficient in terms of storage.

It was developed for optimizing read and write operations in Apache Hive.

Parquet  
Column based

• Writes are not efficient 
• Reads are efficient 
• Highly efficient in terms of storage but not as 
good as ORC

Apache Parquet is an open-source file 
format that is optimized for read-heavy 
analytics pipelines. The columnar storage 
structure of Parquet lets you skip over 
non-relevant data making your queries 
much more efficient. This ability to skip 
also results in sending relevant data from 
storage to the analytics engine resulting in 
lower costs along with better performance. 
In addition, since similar data types (for a 
column) are stored together, Parquet 
lends itself friendly to efficient data 
compression and encoding schemes 
lowering your data storage costs as well.
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Services such as Azure Synapse Analytics, Azure Databricks, and Azure Data 
Factory have native functionality that takes advantage of Parquet file formats.

📌 TIP: If you still need to store the data in any of the semi-structured formats 
such as CSV, JSON, XML, and so on, consider compressing them using 
Snappy compression.

✅ Availability Zones

Availability zones are 
physically separate data 
centers within an Azure region. 
Each availability zone is made 
up of one or more data centers 
equipped with independent 
power, cooling, and 
networking. An availability 
zone is set up to be an 
isolation boundary. If one zone 
goes down, the other continues 
working.

There's a minimum of three availability zones 
within a single region if applicable. However, not 

all regions have availability zones.
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✅ OLTP vs OLAP
Transactional Processing (OLTP) Analytical Processing (OLAP)

Analyses individual entries Analyses large batches of data

Access to recent data Access to older data going back years

Updates data frequently Optimized for reading operations

Faster real-time access Long-running jobs

Usually a single data source Multiple data sources

MySQL, Azure SQL Database
Apache Hive, Teradata, Azure Synapse
Analytics

✅ How is a data lake different from a data warehouse?

RA-GRS and RA-GZRS provide data access across both the region pairs at the same time and thus are 
more costly whereas, in GRS and GZRS, access to the other region pair only happens when one of the 

regions fails
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✅ Big Data Architecture (link)
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✅ Batch processing
Because the data sets are so large, often a big data solution must process data files 
using long-running batch jobs to filter, aggregate, and otherwise prepare the data for 
analysis. Usually, these jobs involve reading source files, processing them, and writing 
the output to new files. 

✅ Stream processing
After capturing real-time messages, the solution must process them by filtering, 
aggregating, and otherwise preparing the data for analysis. The processed stream data is 
then written to an output sink.
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1) Lambda Architecture
One of the shortcomings of batch processing systems is the time it takes to process the 
data. One drawback of this approach is that it introduces latency, a batch pipeline might 
run for several hours - or sometimes even days - to generate the results.

The lambda architecture addresses this problem by using a combination of fast and 
slow pipelines. All data coming into the system goes through these two paths:

A batch layer (cold/slow path) stores all of the incoming data in its raw form and 
performs batch processing on the data. The result of this processing is stored as 
a batch view.

A speed layer (hot/fast path) analyzes data in real time. This layer is designed for 
low latency, at the expense of accuracy.
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Both these pipelines feed into a Serving layer that updates the incremental updates from 
the fast path based on recent data into the baseline data from the slow path.

2) Kappa Architecture
A drawback to the lambda architecture is its complexity. Processing logic appears in two 
different places — the cold and hot paths — using different frameworks. This leads to 
duplicate computation logic and the complexity of managing the architecture for both 
paths.

In Kappa though, all data flows through a single path, using a stream processing 
system.

In Kappa architecture, the input component is a message queue such as an Apache 
Kafka or Azure Event Hubs queue, and all the processing is usually done through Azure 
Stream Analytics or Spark. Kappa architecture can be used for applications such as real-
time ML and applications where the baseline data doesn't change very often.

✅ Partitioning
In many large-scale solutions, data is divided into partitions that can be managed and 
accessed separately. Partitioning can improve scalability, reduce contention, and optimize 
performance. It can also provide a mechanism for dividing data by usage pattern.

There are three typical strategies for partitioning data:

1) Horizontal partitioning (often called sharding)
In this strategy, each partition is a separate data store, but all partitions have the same 
schema. Each partition is known as a shard and holds a specific subset of the data, such 
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as all the orders for a specific set of customers.

2) Vertical partitioning
In this strategy, each partition holds a subset of the fields for items in the data store. The 
fields are divided according to their pattern of use. For example, frequently accessed 
fields might be placed in one vertical partition and less frequently accessed fields in 
another.

3) Functional partitioning
In this strategy, data is aggregated according to how it is used by each bounded context 
in the system. For example, an e-commerce system might store invoice data in one 
partition and product inventory data in another.



💻 DP-203 Notes by Neil Bagchi 11

✅ Azure Storage
The following four data services together are called Azure Storage

A storage account is a container that groups a 
set of Azure Storage services together. Only 
data services from Azure Storage can be 
included in a storage account (Azure Blobs, 
Azure Files, Azure Queues, and Azure Tables).
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Other Azure data services, such as Azure 
SQL and Azure Cosmos DB, are managed as 
independent Azure resources and cannot be 
included in a storage account. 

1) Azure Blob:

Blob (binary large object) Storage is 
an object storage solution. It is the 
cheapest option to store unstructured 
data (no restriction on the type of 
data) that won’t be queried. 

Every blob lives inside a blob container. You can store an unlimited number of blobs in a 
container and an unlimited number of containers in a storage account. Containers are 
"flat"; they can only store blobs, not other containers. Blob Storage does not provide 
any mechanism for searching or sorting blobs by metadata.

📌 Technically, containers are "flat" and don't support any kind of nesting or 
hierarchy. But if you give your blobs hierarchical names that look like file paths 
(such as  finance/budgets/2017/q1.xls), the API's listing operation can filter 
results to specific prefixes. This enables you to navigate the list as if it was a 
hierarchical system of files and folders. This feature is often called virtual 
directories.

Azure Blob Storage supports three different types of blob:

Block blobs: Page blobs: Append blobs: 
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Set of blocks of different 
sizes that can be uploaded 
independently and in 
parallel.

A page blob is 
optimized to support 
random read and write 
operations.

Specialized block blobs 
that support only 
appending new data (no 
updating or deleting 
existing data), but they're 
very efficient at it.

→ Hadoop HDFS vs DataLake (optional)
Hadoop consists of three core components –

Hadoop Distributed File System (HDFS) – It is the storage layer of Hadoop.

Map-Reduce – It is the data processing layer of Hadoop.

YARN – It is the resource management layer of Hadoop.

Other than the core components of Hadoop, we have a bunch of ecosystem 
technologies. Some of the important ones are Apache Spark, SQL Hive, Hbase, 
Sqoop, Pig, and Oozie. All these together are called the Hadoop Ecosystem

A data lake is an architecture within which Hadoop HDFS is just the storage 
component of that architecture. In a sense, both of these are complementary to each 
other. However, it is not necessary for a data lake to always use HDFS. Based on the 
requirements of the task, we can swap it with other technologies such as Apache 
Kafka for managing real-time data, NoSQL for transaction-oriented data, Hadoop for 
economical storage, or more recent Apache KUDU for large-scale analytics 
workloads.

Hadoop already has inbuilt advantages such as a 
fault-tolerant file system, the ability to run on 
commodity hardware, etc. Microsoft utilized these 
advantages by creating Data Lake Gen 1 which is 
basically Hadoop in the cloud.

However, with time, requirements evolved in terms 
of processing as well as storage capabilities

Here enters Microsoft Blob Storage which could store massive amounts of 
unstructured data. Blob storage is a general-purpose object storage that provides 
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cheap storage. So Microsoft combined all the good features of Blob storage and 
DataLake Gen1 to create Azure Data Lake Gen2

Differences:

Hadoop 2.0 ADLS Gen2

Clusters are tightly coupled with HDFS Storage is separate from clusters

On stopping the cluster, all data is lost
We can stop the cluster without losing any
data

Costly: Clusters have to keep on running
even if there is no processing and pay for
both storage and cluster

Cost efficient: Only pay for storage when
processing is not required

1.a) Data Lake Storage Gen2 (optimized for big data 
analytics)

Enhanced Blob Storage for 
enterprise big data analytics 
(hierarchical namespace). It 
provides low-cost, tiered 
storage, with high availability/ 
disaster recovery.

• ABFS (Azure blob file system) is a dedicated driver for Hadoop running on Azure blob 
storage. Think of the data as if it's stored in a Hadoop Distributed File System (HDFS) 
which means that Azure Data Lake Storage organizes the stored data into a hierarchy of 
directories and subdirectories, much like a file system, for easier navigation. As a result, 
data processing requires fewer computational resources, reducing both the time and cost. 
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• Azure Data Lake Storage Gen2 implements an access control model that supports both 
Azure role-based access control (Azure RBAC) and POSIX-like access control lists 
(ACLs). You can set permissions at a directory level or file level for the data stored within 
the data lake. (more on this later)

Below is a common example we see for data that is structured by date: 

➖ /DataSet/YYYY/MM/DD/datafile_YYYY_MM_DD

➖ {Region}/{SubjectMatter(s)}/{yyyy}/{mm}/{dd}/{hh}/

📌 TIP: Avoid putting date folders at the beginning as it makes applying ACLs to 
every subfolder more tedious.

2) Azure Files: 

Azure Files offers fully managed file 
shares in the cloud that can be 
accessed and managed like a file 
server using the industry standard 
Server Message Block (SMB) and 
Network File System (NFS) 
protocols. 

File shares can be used for many common scenarios:

Shared data between on-premises applications and Azure VMs to allow migration of 
apps to the cloud over a period of time.

Storing shared configuration files for VMs, tools, or utilities so that everyone is using 
the same version. Log files such as diagnostics, metrics, and crash dumps.

3) Azure Queue: 

A messaging store used to store a 
large number of messages that can 
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be accessed asynchronously 
between the source and the 
destination.

There are two types of queues: Storage queues and Service Bus.

Storage queues can be used for simple asynchronous message processing. They 
can store up to 500 TB of data (per storage account) and each message can be up to 
64 KB in size.

Service Bus provides advanced features plus the message sizes can be up to 1 MB 
but the overall size is capped at 80 GB.

4) Azure Table: 

A NoSQL store that hosts 
unstructured data independent of 
any schema. It makes use of tables 
containing key-value data items. 

It makes use of tables containing key-value data items but is not similar to a relational 
database. Thus there is no concept of relationships, stored procedures, secondary 
indexes, or foreign keys. Data is denormalized, with each row holding the entire data for 
a logical entity. To help ensure fast access, Azure Table Storage splits a table into 
partitions

✅ Data archiving solution
Hot access tier: 

Higher storage 
costs, but lower 
access and 
transaction costs. 
Optimized for 
storing data that is 

Cool access tier: 

Lower storage costs, 
but higher access and 
transaction costs. 
Optimized for data that is 
infrequently accessed 
and stored for at least 

Archive access tier (available 
only at individual blob level): 

Lowest storage costs, but 
highest access, and transaction 
costs. 
Appropriate for data that is rarely 
accessed and stored for at least 
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accessed frequently 
(for example, 
images for your 
website).

30 days (for example, 
invoices for your 
customers).

180 days, with flexible latency 
requirements (for example, long-
term backups)

📌 To read data in archive storage, you must first change the tier of the blob to hot 
or cool. This process is known as rehydration and can take hours to complete.

✅ Data life cycle management
We can define policies such as how long a particular data needs to be in the Hot Access, 
when to move the data between the different access tiers, when to delete blobs, and so 
on. Azure runs data life cycle policies only once a day, so it could take up to 24 
hours for your policies to kick in.

✅ Optimizing data lake for scale and performance
Optimize for high throughput – target getting at least a few MBs (higher the better) 
per transaction.

Optimize data access patterns – reduce unnecessary scanning of files, read only 
the data you need to read

1) File sizes and number of files
Analytics engines (ingest or data processing pipelines) incur overhead for every file they 
read (related to the listing, checking access, and other metadata operations) and too 
many small files can negatively affect the performance of your overall job. Further, when 
you have files that are too small (in the KBs range), the amount of throughput you achieve 
with the I/O operations is also low, requiring more I/Os to get the data you want. In 
general, it's a best practice to organize your data into larger-sized files (target at least 
100 MB or more) for better performance.

In a lot of cases, if your raw data (from various sources) itself is not large, you have the 
following options to ensure the data set your analytics engines operate on is still 
optimized with large file sizes.
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Add a data processing layer in your analytics pipeline to coalesce data from multiple 
small files into a large file. You can also use this opportunity to store data in a read-
optimized format such as Parquet for downstream processing.

In the case of processing real-time data, you can use a real-time streaming engine 
(such as Azure Stream Analytics or Spark Streaming) in conjunction with a message 
broker (such as Event Hub or Apache Kafka) to store your data as larger files.

2) Partitioning Strategy
An effective partitioning scheme for your data can improve the performance of your 
analytics pipeline and also reduce the overall transaction costs incurred with your query. 
In simplistic terms, partitioning is a way of organizing your data by grouping datasets with 
similar attributes together in a storage entity, such as a folder. When your data processing 
pipeline is querying for data with that similar attribute (E.g. all the data in the past 12 
hours), the partitioning scheme (in this case, done by DateTime) lets you skip over the 
irrelevant data and only seek the data that you want.

For Blob Storage
If you remember, we discussed how every blob lives inside a blob container that we 
create. However, these containers are logical entities, so there is no guarantee that 
the data blobs we create will land in the same partition.

However, Azure implements range partitioning using lexical sequence i.e. 
filenames File1, File2, .. may end up in the same partition when compared to OldFile1, 
OldFile2, .. which may end up in a different partition. 

Azure Storage uses <account name + container name + blob name> as the 
partition key.

For ADLS Gen2
Since ADLS is hierarchical in nature, implementing a folder structure will take care of 
the partitioning strategy. Try to follow something like 
{Region}/{SubjectMatter(s)}/{yyyy}/{mm}/{dd}/{hh}/

✅ How to organize data? (Best Practice - more 
reading)

As an example, think of the raw data as 
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a lake/pond with water in its natural 
state, the data is ingested and stored as 
is without transformations, and the 
enriched data is water in a reservoir that 
is cleaned and stored in a predictable 
state (schematized in the case of our 
data), the curated data is like bottled 
water that is ready for consumption. 
Workspace data is like a laboratory 
where scientists can bring their own for 
testing. It's worth noting that while all 
these data layers are present in a single 
logical data lake, they could be spread 
across different physical storage 
accounts. In these cases, having a 
metastore is helpful for discovery.

Raw data: This is data as it comes from the source systems. This data is stored as is 
in the data lake and is consumed by an analytics engine such as Spark to perform 
cleansing and enrichment operations to generate the curated data. The data in the 
raw zone is sometimes also stored as an aggregated data set, e.g. in the case of 
streaming scenarios, data is ingested via a message bus such as Event Hub, and then 
aggregated via a real-time processing engine such as Azure Stream Analytics or 
Spark Streaming before storing in the data lake.

Enriched data: This layer of data is the version where raw data (as is or aggregated) 
has a defined schema and also, and the data is cleansed, and enriched (with other 
sources), and is available to analytics engines to extract high-value data.

Curated data: This layer of data contains the high-value information that is served to 
the consumers of the data – the BI analysts and the data scientists. This data has 
structure and can be served to the consumers either as is (E.g. data science 
notebooks) or through a data warehouse. Data assets in this layer are usually highly 
governed and well documented.

Workspace data: In addition to the data that is ingested by the data engineering team 
from the source, the consumers of the data can also choose to bring other data sets 
that could be valuable. In this case, the data platform can allocate a workspace for 
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these consumers so they can use the curated data along with the other data sets they 
bring to generate valuable insights.

Archive data: This is an organization’s data ‘vault’ - that has data stored to primarily 
comply with retention policies and has very restrictive usage, such as supporting 
audits. You can use the Cool and Archive tiers in ADLS Gen2 to store this data.

✅ Latency metrics
Request rate is measured in Input/output operations per second (IOPS). The request 
rate is calculated by dividing the time it takes to complete one request by the number of 
requests per second. E.g. Let us assume that a request from a single thread application 
with one outstanding read/write operation takes 10 ms to complete.

Request Rate = 1sec/10ms = 1000ms/10ms = 100 IOPS

This means the outstanding read/write would achieve a request rate of 100 IOPS.

Azure Storage provides two latency metrics for block blobs. These metrics can be viewed 
in the Azure portal:

End-to-end (E2E) latency measures the interval from when Azure Storage receives 
the first packet of the request from a client until Azure Storage receives a client 
acknowledgment on the last packet of the response.

Server latency measures the interval from when Azure Storage receives the last 
packet of the request from a client until the first packet of the response is returned 
from Azure Storage.
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✅  Storage Account Security Features
Azure Storage provides a layered security model. We can use this model to secure our 
storage accounts to a specific set of supported networks. Network rules allow only 
applications that request data over the specified networks to access our storage account.

Authorization is supported by a public preview of Azure Active Directory credentials (for 
blobs and queues), a valid account access key, or a shared access signature (SAS) 
token. Data encryption is enabled by default, and you can proactively monitor systems by 
using Advanced Threat Protection.
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1) Access keys
Each storage account has two 
unique access keys that are used to 
secure the storage account. If your app 
needs to connect to multiple storage 
accounts, your app will require an access 
key for each storage account.

📌 TIP: Periodically rotate access keys to ensure they remain private, just like 
changing your passwords. We can also use an Azure Key Vault to store the 
access key which includes the support to synchronize directly to the Storage 
Account and automatically rotate the keys periodically. 

2) Shared Access Signatures (SAS)
For external third-party applications, use a shared access signature (SAS). A SAS is a 
string that contains a security token that can be attached to a URL. You can use SAS 
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to delegate access to storage objects and specify constraints, such as the permissions 
and the time range of access.

Azure doesn’t track SAS after creation. 
Additionally, SAS tokens are tied to the 
access keys indirectly so to invalidate a 
SAS token, we need to regenerate/refresh 
the access keys. This can be painful to 
keep track of and continuously regenerate 
the keys. So an alternative is to use the 
Stored Access Policy. 

📌 A stored access policy groups together shared access signatures and 
provides additional restrictions for signatures that are bound by the policy. We 
can use a stored access policy to change the start time, expiry time, or 
permissions for a signature. We can also use a stored access policy to revoke 
a signature after it has been issued.

3) Role-based access control (RBAC)
Azure role-based access control (Azure RBAC) helps manage who has access to Azure 
resources, what they can do with those resources, and what data they have access to. 
For ex: 

1) Security Pricipal: A security principal is an object 
that represents a user, group, service principal, or 
managed identity that is requesting access to Azure 
resources. You can assign a role to any of these 
security principals.
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2) Role Definition: A role definition is a collection of 
permissions. It's typically just called a role. A role 
definition lists the actions that can be performed, 
such as read, write, and delete. Azure has a huge list 
of predefined roles, such as Owner, Contributor, and 
Reader, etc with the right list of permissions, already 
assigned.

3) Scope: Scope is the set of resources that the 
access applies to.

4) Access Control Lists (ACL)
In the POSIX-style model, permissions for an item are stored on the item itself. In other 
words, permissions for an item cannot be inherited from the parent items if the 
permissions are set after the child item has already been created. Permissions are only 
inherited if default permissions have been set on the parent items before the child items 
have been created.
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We can associate a security principal with an 
access level for files and directories. Each 
association is captured as an entry in an access 
control list (ACL). Each file and directory in your 
storage account has an access control list. When a 
security principal attempts an operation on a file or 
directory, an ACL check determines whether that 
security principal has the correct permission level to 
perform the operation.

📌 ACL can never supersede an RBAC role. It can only augment the role with 
additional permissions. For ex: A user who has been provided RBAC on blob 
storage whereas in the ACL list, has been denied all the read, write and 
execute permissions will still have this permission through the RBAC role.

📌 RBAC provides course grain permissions to the data lake or to folders inside it. 
These are used to allow or deny permissions to the folder structure but 
typically do not dictate the ability of the user to perform actions against the 
data.  
ACLs are used to define the fine grain permissions to the data, this is where 
the ability of the user to read, write, modify or delete the data is set.

5) Firewalls and Virtual Networks
Azure Storage provides a layered security model. Storage accounts having a public 
endpoint is accessible through the internet. We can also create Private Endpoints for your 
storage account, which assigns a private IP address from our VNet to the storage 
account, and secures all traffic between our VNet and the storage account over a private 
link. 



💻 DP-203 Notes by Neil Bagchi 26

Authorization is supported with Azure Active Directory (Azure AD) credentials for blobs 
and queues, with a valid account access key, or with a SAS token. When a blob container 
is configured for anonymous public access, requests to read data in that container do not 
need to be authorized, but the firewall rules remain in effect and will block anonymous 
traffic.

6) Encryption at Transit

Encryption at Transit refers to encrypting the data that is being 
moved from one place to another. Examples of data movement 
could be data being read by an application, data getting 
replicated to a different zone, or data being downloaded from 
the cloud.
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Encryption at transit is achieved by 
enabling Transport Layer Security 
(TLS). For HTTP-based services, it means 
using HTTPS protocol to make sure that 
data is not readable when it is on the 
move. Most of the Azure services provide 
configuration settings to enable TLS. This 
option is also enabled by default and 
users can disable it if for any reason they 
don’t need it.

7) Encryption at Rest

Encryption at rest is the process of encrypting data before 
writing it to disks and decrypting the data when requested by 
applications.

Encryption at rest is enabled by default and can’t be disabled. All data written to Azure 
Storage is automatically encrypted by Storage Service Encryption (SSE) with a 256-bit 
Advanced Encryption Standard (AES) cipher. 

SSE automatically encrypts data when writing it to Azure Storage. When you read data 
from Azure Storage, Azure Storage decrypts the data before returning it. This process 
incurs no additional charges and doesn't degrade performance. It can't be disabled.

✅ Azure Data Factory
A good youtube video for an introduction to ADF

ADF provides a cloud-based ETL solution that orchestrates data 
movement by scheduling data pipelines and transforming data 
at scale between various data stores and compute resources.

Secure Transfer required = Encryption at transit
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Collect Phase

Define and connect 
all the required 
sources of data 
together, such as 
databases, file 
shares, and FTP 
web services

Transform & 
Analyse

Compute 
services such as 
Databricks can 
be used to 
prepare 
transformed data 
to feed prod 
environments 
with cleansed 
and transformed 
data

Publish Phase

Finally, load the 
data onto a 
destination- 
Azure Data 
Warehouse, 
Azure SQL 
Database, Azure 
Cosmos DB, or 
any other service 
for consumption

Monitor Phase

built-in support for 
pipeline monitoring 
via Azure Monitor, 
API, PowerShell, 
Azure Monitor logs, 
and health panels 
on the Azure portal



💻 DP-203 Notes by Neil Bagchi 29

✅ ADF Top Level Concepts
Azure Data Factory is composed of key components.

→ Pipeline    → Activities    → Datasets    → Linked Service    → 
Data Flows 
→ Integration Runtimes    → Triggers    → Parameters

Azure Data Factory can have one or more pipelines. A pipeline is a logical grouping of 
activities that together perform a task. For example, a pipeline could contain a set of 
activities that ingest and clean log data, and then kick off a mapping data flow to analyze 
the log data. The pipeline allows you to manage the activities as a set instead of each one 
individually. You deploy and schedule the pipeline instead of the activities independently. 

Now, a dataset is a named view of data that simply points or references the data you 
want to use in your activities as inputs and outputs. Before you create a dataset, you 
must create a linked service to link your data store to the Data Factory. Linked services 
are like connection strings, which define the connection information needed for the 
service to connect to external resources. 

Think of it this way; the dataset represents the structure of the data within the linked data 
stores, and the linked service defines the connection to the data source. For example, to 
copy data from Blob storage to a SQL Database, you create two linked services: Azure 
Storage and Azure SQL Database. Then, create two datasets: an Azure Blob dataset 
(which refers to the Azure Storage linked service) and an Azure SQL Table dataset (which 
refers to the Azure SQL Database linked service).

In Data Flow, datasets are used in source and sink transformations. The datasets define 
the basic data schemas. If your data has no schema, you can use schema drift for your 
source and sink (more on schema drift later). Pipeline runs are typically instantiated by 
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passing arguments to parameters that you define in the pipeline. You can execute a 
pipeline either manually or by using a trigger. We have the following triggers in ADF: 
scheduled, tumbling window, and event-based (more on this later).

Finally, The Integration Runtime (IR) provides the compute infrastructure for completing 
a pipeline. We have the same three types of IR: Azure, Self-hosted, and Azure-SSIS 
(more on this later).

✅ Linked Service
The Linked Service represents the connection information that enables the ingestion of 
data from external resources such as a data store (Azure SQL Server) or compute 
service (Spark Cluster).

✅ Dataset
Datasets represent data structures within your data stores. These point to (or reference) 
the data that we want to use in our activities and are referenced by the Linked service.
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✅ Pipeline
A pipeline represents a logical grouping of activities where the activities together perform 
a certain task. The advantage of using a pipeline is that you can more easily manage the 
activities as a set.

📌 Annotations: 
When monitoring data pipelines, you may want to be able to filter and monitor a 
certain group of activities, such as those of a project or specific department's 
pipelines. You can achieve these using annotations. 
 
Annotations are tags that you can add (only static values) to pipelines, 
datasets, linked services, and triggers to easily identify them. For more, click 
here.

✅ Activity (Inside a pipeline)
Activities are actions that are performed on the data. An activity can take zero or more 
input datasets and produce one or more output datasets. Activities contain the actual 
transformation logic. 

An activity that depends on one or more previous activities, can have different 
dependency conditions. The four dependency conditions are: Succeeded, Failed, 
Skipped, and Completed.



💻 DP-203 Notes by Neil Bagchi 32

Because there are many activities that are possible in a pipeline in Azure Data Factory, 
activities can be grouped into three categories:

1) Data movement activities: 
The Copy Activity in the Data Factory copies data from a source data store to a sink data 
store. Supported stores include all Azure offerings, selected SAP offerings, and much 
more. For a detailed list, click here.

1. All activities that can be used within the pipeline. 
2. The pipeline editor canvas, where activities will appear when added to the pipeline. 

3. The pipeline configurations pane, including parameters, variables, general settings, and output. 
4. The pipeline properties pane, where the pipeline name, optional description, and annotations can be 

configured. This pane will also show any related items to the pipeline within the data factory.
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2) Data transformation activities: 
Data transformation activities can be performed natively within the authoring tool of Azure 
Data Factory using the Mapping Data Flow. Alternatively, you can call a compute 
resource to change or enhance data through transformation, or perform analysis of the 
data. These include compute technologies such as Azure Databricks, Azure Batch, SQL 
Database and Azure Synapse Analytics. For details, click.

3) Control flow activities: 

Control flow is a group of pipeline activities that includes chaining 
activities in a sequence, branching, defining parameters at the 
pipeline level, and passing arguments while invoking the pipeline on 
demand or from a trigger.

These are activities that can affect the path of execution. 

Append Variable: Used to add a value to an existing 
array variable.

Set Variable: Used to set the value of an existing 
variable of type String, Bool, or Array.
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Execute Pipeline: Allows a pipeline to invoke another 
pipeline.

If Condition: Allows directing pipeline execution, based 
on evaluation of certain expressions.

Get Metadata: Used to retrieve metadata of any data in 
ADF.

ForEach: Defines a repeating control flow in your 
pipeline. ADF can start multiple activities in parallel 
using this approach.

Lookup: Retrieve a dataset from any of the ADF-
supported data sources. Can be used for delta loads.

Filter: Used to apply a filter expression to an input array.

Until: Executes a set of activities in a loop until the 
condition associated with the activity evaluates to true.

Wait: Wait activity allows pausing pipeline execution for 
the specified time period.

For reading more about these individual activities, click here.

✅ Data Flows

Data Flows are used to build code-free transformation data flows/ 
transformation logic that is executed on automatically provisioned 
Apache Spark clusters. ADF internally handles all the code 
translation, spark optimization, and execution of the transformation.

Control Flow Activity Data Flow Transformation

Affects the execution sequence or path of the
pipeline

Transforms the ingested data

Can be recursive Non-recursive

No source/sink Source and sink are required

Implemented at the pipeline level Implemented at the activity level
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1) Transforming data using the Mapping Data Flow 
(present in both ADF and Synapse Analytics)

Data flow has a unique authoring canvas designed to make building transformation logic 
easy. The data flow canvas is separated into three parts: the top bar, the graph, and the 
configuration panel.

➖ Debug mode: Here you can actually 
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see the results of each transformation. In 
the debug mode session, the data flow 
runs interactively on a Spark cluster. In 
the debug mode you will be charged on an 
hourly basis when the cluster is active. It 
typically takes 5-7 minutes for the cluster 
to spin up. With this mode, you are able to 
build your data flow step by step and view 
the data as it runs through each 
transformation phase.

→ Graph
The graph displays the transformation stream. It 
shows the lineage of source data as it flows into 
one or more sinks. To add a new source, 
select Add source. To add a new 
transformation, select the plus sign on the lower 
right of an existing transformation.

→ Configuration panel
The configuration panel shows the settings specific to the currently selected 
transformation. If no transformation is selected, it shows the data flow. In the overall data 
flow configuration, you can add parameters via the Parameters tab. Each transformation 
contains at least four configuration tabs. Read more here

1) Transformation settings

If AutoResolveIntegrationRuntime is chosen, a 
cluster with eight cores of general compute with a 

default 60-minute time to live will be spun up.
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The first tab in each transformation's configuration pane contains the settings specific 
to that transformation. 

2) Optimize
The Optimize tab contains settings to configure partitioning schemes.

3) Inspect
The Inspect tab provides a view into the metadata of the data stream that you're 
transforming. You can see column counts, the columns changed, the columns added, 
data types, the column order, and column references. Inspect is a read-only view of 
your metadata. You don't need to have debug mode enabled to see metadata in 
the Inspect pane.
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As you change the shape of your data through transformations, you'll see the 
metadata changes flow in the Inspect pane. If there isn't a defined schema in your 
source transformation, then metadata won't be visible in the Inspect pane. Lack of 
metadata is common in schema drift scenarios.

4) Data preview
If debug mode is on, the Data Preview tab gives you an interactive snapshot of the 
data at each transform.
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Mapping Data Flows provides a number of different transformations 
types that are broken down into the following categories:
Multiple input/output 
transformations

These transformations will 
generate new data 
pipelines or merge into 
one e.g. union of multiple 
data streams

Schema modifier 
transformations

Make a modification to a 
sink destination by creating 
new columns based on the 
action of the transformation 
e.g. derived column after 
performing some operation 
on the existing column

Row modifier 
transformations

These impact how the 
rows are presented in 
the sink e.g. sorting of 
a particular column

Note: Filter transformation in data flow is different from Filter activity in control 
flow

Example of Mapping Data Flow
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Link showing the detailed implementation steps or here. To learn 
about optimizing data flow, check this link.

1.a) Data Flow Expression Builder
Some of the transformations can be defined using a Data Flow Expression Builder that 
will enable you to customize the functionality of a transformation using columns, fields, 
variables, parameters, and functions from your data flow in these boxes.

Here is a sample expression that can be used to create date directories and automatic 
partitioning:
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"staging/driver/out/" + toString(year(currentDate()))  + "/" +  
toString(month(currentDate())) + "/" + toString(dayOfMonth(currentDate()))
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📌 Schema Drift

Schema drift is the case where your sources often change metadata. Fields, 
columns, and, types can be added, removed, or changed on the fly. Without 
handling schema drift, your data flow becomes vulnerable to upstream data 
source changes.

Schema drift in Source
Schema drift in Sink

If schema drift is enabled, make sure the Auto-mapping slider in the Mapping tab is turned 
on. With this slider on, all incoming columns are written to your destination. Otherwise, you 

must use rule-based mapping to write drifted columns.
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2) Transforming data using Wrangling Data Flows  
(ADF only, not present in Synapse Analytics)
Wrangling data flow is used for data prepping using Power Query

✅ Parameters

In the Derived Column transformation, each drifted column is mapped to its detected name 
and data type



💻 DP-203 Notes by Neil Bagchi 44

Parameters are used to pass external values into pipelines, 
datasets, linked services, and data flows. These are key-value 
pairs of read-only configuration. Once the parameter has been 
passed into the resource, it cannot be changed. By parameterizing 
resources, you can reuse them with different values each time. This 
reduces redundancy in your ETL pipelines and improves flexibility.

1) Dataset Parameters
When working with a database with multiple tables in it, instead of creating a new dataset 
for using each of them, dataset parameters can be used to pass the table names at run 
time.

You will need to create a dataset without mentioning the table name while creating it

Parameters have to be added in the 
parameters tab. In the example for 
creating the Azure SQL dataset, we 
have added two parameters, one for 
the schema name and the other for 
the name of the table.

Click on edit below the table. Then we 
can click on add dynamic content 
which will appear below the table. 
After clicking on that we will be able to 
see the parameters we added.

We can click on the parameters we 
want to add by clicking on them. It will 
look like this

After saving this dataset, You can 
pass table name and schema names 
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parameters inside the pipeline. ADF 
will ask for these values when we 
trigger/debug the pipeline.

2) Linked Service Parameters
Linked service parameters can be used to parameterize the domain name, database 
name, username, and password for the database.

In the following example, we are 
creating a new Azure SQL database. 
Go to the linked service in the monitor 
tab of ADF and create a new linked 
service. When we create a new linked 
service, we will see the option of 
parameters, scrolling down to the 
bottom.

These can be used in the linked 
service connection.  In order to use 
these parameters whenever we create 
a new dataset, we can create dataset 
parameters.
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Here parameters are added while 
creating the Azure SQL dataset, to 
pass the values to the linked service

In the linked service itself, if we select 
the linked service with parameters in 
it, we will see Linked service 
properties, where we can either 
hardcode the values or pass dataset 
parameters to use them at the run 
time.

We will see the dataset properties in 
the pipeline where we can pass the 
values.
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3) Pipeline Parameters
Pipeline parameters can be created 
by clicking on the blank space in the 
pipeline

These can be accessed by using the 
syntax @pipeline().parameters.
<parameter name>

4) Parameters in Mapping Data Flow
There are three options for setting the values in the data flow activity expressions:

Use the pipeline control flow expression language to set a dynamic value.

Use the data flow expression language to set a dynamic value.

Use either expression language to set a static literal value.

The reason for parameterizing mapping data flows is to make sure that your data flows 
are generalized, flexible, and reusable.

Data flow is one of the activities in ADF pipeline, so the way to pass the parameters 
to it is the same as passing pipeline parameters above.

When we create a dataflow we can 
select any parameterized dataset, for 
example, we have selected the 
dataset from the DATASET 
PARAMETERS section below.

Now when we add dataflow activity in 
the pipeline and select the above 
dataflow, we will see the source1 
parameters option to pass the table 
name and schema name.
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If we want to access these during 
debugging the dataflow and not in the 
pipeline itself, we can see debug 
settings beside it. Inside the setting, 
we have the option to define the 
parameters.

Link to an example showing Integration of a Notebook within Azure Synapse 
Pipelines

✅ Integration Runtime
ADF is a managed service (PaaS) i.e it will create the required computing infrastructure to 
complete the activity. This is known as integration runtime. Thus IR provides a fully 
managed, serverless computing infrastructure. There are three types of Integration 
Runtime which are discussed later.

The Integration Runtime (IR) is the compute infrastructure used by Azure Data Factory 
and Azure Synapse pipelines to provide the following data integration capabilities across 
different network environments:

Data Flow: Execute a Data Flow in a managed Azure compute environment.

Data movement: Copy data across data stores in a public or private network (for 
both on-premises or virtual private networks).

Activity dispatch: Dispatch and monitor transformation activities running on a variety 
of compute services such as Azure Databricks, Azure HDInsight, ML Studio (classic), 
Azure SQL Database, SQL Server, and more.

SSIS package execution: Natively execute SQL Server Integration Services (SSIS) 
packages in a managed Azure compute environment.
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1) Azure Integration Runtime

Works on public networks. 
Provides Data Flow, Data movement and Activity dispatch
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There is auto-resolve Azure IR option that automatically detects the sink and source 
data store to choose the best location either in the same region if available or the closest 
one in the same geography. Its best to avoid this feature and manually enter the 
locations.

2) Self-hosted Integration Runtime

Works on public and private networks 
Provides Data movement and Activity dispatch
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The self-hosted integration runtime is logically registered to the Azure Data Factory 
and the compute resource used to support its function is provided by you. Therefore there 
is no explicit location property for self-hosted IR. In order to use the on-premise 
infrastructure, we need to register the server and install the self-hosted IR. 

3) Azure SSIS Integration Runtime

Works on public and private networks 
Supports SSIS package execution

The Azure-SSIS IR is a fully managed cluster of Azure VMs dedicated to running your 
SSIS packages.

Link to an example showing the detailed implementation steps 

✅ Triggers
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Triggers are used to schedule a Data Pipeline runs without any 
interventions. In other words, it’s a processing unit that 
determines when to begin or invoke an end-to-end pipeline 
execution

Azure Data Factory Triggers come in three different types: Schedule Trigger, Tumbling 
Window Trigger, and Event-based Trigger.

1) Schedule Trigger
This Azure Data Factory Trigger is a popular 
trigger that can run a Data Pipeline according to 
a predetermined schedule. It provides extra 
flexibility by allowing for different scheduling 
intervals like a minute(s), hour(s), day(s), 
week(s), or month(s).

The Schedule Azure Data Factory Triggers are 
built with a “many to many” relationship in 
mind, which implies that one Schedule Trigger 
can run several Data Pipelines, and a single 
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Data Pipeline can be run by multiple Schedule 
Triggers.

2) Tumbling Window Trigger
The Tumbling Window Azure Data Factory Trigger executes Data Pipelines at 
a specified time slice or pre-determined periodic time interval. It is significantly more 
advantageous than Schedule Triggers when working with historical data to copy or 
migrate data.

Consider the scenario in which you need to replicate data from a Database into a Data 
Lake on a regular basis, and you want to keep it in separate files or folders for every hour 
or day.

To implement this use case, you have to set a Tumbling Window Azure Data Factory 
Trigger for every 1 hour or every 24 hours. The Tumbling Window Trigger sends the start 
and end times for each time window to the Database, returning all data between those 
periods. Finally, the data for each hour or day can be saved in its own file or folder.

Dependency 
Offset

Dependency 
Size

Self Dependency
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3) Event-based Trigger
The Event-based Azure Data Factory Trigger 
runs Data Pipelines in response to blob-
related events, such as generating or deleting 
a blob file present in Azure Blob Storage. 

In addition, Event-based Triggers are not only 
compatible with blob, but also with Azure Data 
lake Storage. Event Triggers also work 
on many-to-many relationships, in which a 
single Event Trigger can run several Pipelines, 
and a single Pipeline can be run by multiple 
Event Triggers

✅ Debug and Publish a pipeline 
(link - introduction to debugging provided in mapping data flow)

Azure Data Factory can help iteratively debug Data Factory pipelines when developing 
data integration solutions. You don't need to publish changes in the pipeline or activities 
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before you debug. This is helpful in a scenario where you want to test the changes and 
see if it works as expected before you actually save and publish them.

Sometimes, you don't want to debug the whole pipeline but test a part of the pipeline. You 
can test the pipeline end to end or set a breakpoint. By doing so in debug mode, you can 
interactively see the results of each step while you build and debug your pipeline.

✅ Manage Source Control (CI/CD)
Azure Data Factory integrates with Azure DevOps and GitHub to allow easy source 
control and effective continuous integration and delivery. Azure Data Factory also offers a 
variety of both visual and programmatic monitoring services to also support the 
monitoring of your pipelines.

Link showing the detailed implementation steps 

✅ Azure Databricks
Databricks is a comprehensive data analytics solution built on 
Apache Spark and offers native SQL capabilities as well as 
workload-optimized Spark clusters for data analytics and data 
science. Databricks provides an interactive user interface 
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through which the system can be managed and data can be 
explored in interactive notebooks.

Remember that Spark is a replacement for MapReduce, not Hadoop. It's a part of the 
ecosystem. Thus, Spark requires two more things to work: Storage (local 
storage/HDFS/Amazon S3) and Resource Manager (YARN/Mesos/Kubernetes). Spark is 
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written in SCALA but it officially supports Java, Scala (most used), Python (PySpark), 
and R.

Apache Spark supports data 
transformations with three different 
Application Programming Interfaces 
(APIs): Resilient Distributed Datasets 
(RDDs), DataFrames, and Datasets.

However, in the latest version, dataset and 
dataframe are combined to be called a 
dataset.

Azure Databricks is an amalgamation of multiple technologies that enable you to work 
with data at scale.

Workspace
It is an environment for accessing all of Azure Databricks assets. The workspace 
organizes objects such as notebooks, libraries, queries, and dashboards into folders, and 
provides access to data and computational resources such as clusters and jobs. Each 
workspace is isolated from others and each workspace has its own identifier.

Azure Databricks Architecture  
Databricks can process the data from ADLS without importing the data into Databricks by 

mounting on it
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Databricks File System (DBFS)
DBFS is a filesystem abstraction layer over a blob store. While each cluster node has its 
own local file system (on which the operating system and other node-specific files are 
stored), the cluster nodes also have access to a shared, distributed file system that they 
can access and operate on. The Databricks File System (DBFS) enables you to mount 
cloud storage and use it to work with persistent file-based data.

Apache Spark clusters
Spark is a distributed data processing solution that makes use of clusters to scale 
processing across multiple compute nodes. Each Spark cluster has a driver node to 
coordinate processing jobs and one or more worker nodes on which the processing 
occurs. This distributed model enables each node to operate on a subset of the job in 
parallel; reducing the overall time for the job to complete.

1) Interactive Cluster- 
Multiple users can interactively analyze the data together. Need to terminate the cluster 
after job completion. These are comparatively costly and can autoscale on demand.

1. Standard Cluster Mode- This is used for single-user use, and provides no fault 
isolation. Supports Scala, Python, SQL, R, and Java.

2. High Concurrency Cluster Mode- This is used for multiple users, and provides 
fault isolation along with maximum cluster utilization. Supports only Python, SQL 
& R. The performance, security, and fault isolation of high concurrency clusters is 
provided by running user code in separate processes, which is not possible in 
Scala.
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2) Automated/Job Cluster- 
These are auto-created and auto-terminated for running automated jobs. These provide 
high throughput with auto-scaling capability although being comparatively cheaper.
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Notebooks
One of the most common ways to work with Spark is by writing code in notebooks. 
Notebooks provide an interactive environment in which you can combine text and 
graphics in Markdown format with cells containing code that you run interactively in the 
notebook session.

Hive metastore
Hive is an open-source technology used to define a relational abstraction layer of tables 
over file-based data. The tables can then be queried using SQL syntax. The table 
definitions and details of the file system locations on which they're based are 
stored in the metastore for a Spark cluster. A Hive metastore is created for each 
cluster when it's created, but you can configure a cluster to use an existing external 
metastore if necessary.

Delta Lake
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Delta Lake builds on the relational table schema abstraction over files in the data lake to 
add support for SQL semantics commonly found in relational database systems. 
Capabilities provided by Delta Lake include transaction logging, data type constraints, 
and the ability to incorporate streaming data into a relational table.

SQL Warehouses
SQL Warehouses are relational compute resources with endpoints that enable client 
applications to connect to an Azure Databricks workspace and use SQL to work with data 
in tables. SQL Warehouses are only available in premium tier Azure Databricks 
workspaces.

✅ Internal working
In Databricks, the notebook interface is typically the driver program. SparkContext, an 
object of the driver program runs the main function, creates distributed datasets on the 
cluster, applies parallel operations to the cluster nodes, and then collects the results of 
the operations. 

Driver programs access Apache Spark through a SparkSession object. The nodes read 
and write data from and to the file system and cache transformed data in-memory as 
Resilient Distributed Datasets (RDDs). The SparkContext is responsible for converting 
an application to a directed acyclic graph (DAG). The graph consists of individual tasks 
that get executed within an executor process on the nodes. Each application gets its own 
executor processes, which stays up for the duration of the whole application and run 
tasks in multiple threads.

✅ How Azure manages cluster resources
Microsoft Azure manages the cluster, and auto-scales it as needed based on your usage 
and the setting used when configuring the cluster. Spark parallelizes jobs at two levels:

The first level of parallelization is the executor - a Java virtual machine (JVM) 
running on a worker node, typically, one instance per node.

The second level of parallelization is the slot - the number of which is determined by 
the number of cores and CPUs of each node.

Each executor has multiple slots to which parallelized tasks can be assigned.
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When you create an Azure Databricks workspace, a resource group is created that 
contains the driver and worker VMs for your clusters, along with other required resources, 
including a virtual network, a security group, and a storage account. All metadata for your 
cluster, such as scheduled jobs, is stored in an Azure Database with geo-replication for 
fault tolerance. Internally, Azure Kubernetes Service (AKS) is used to run the Azure 
Databricks control plane and data planes via containers.

Mounting file-based storage to DBFS using Service Principal allows seamless access to data from the 
storage account without requiring credentials after the first time 
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✅ Transformations usually performed on a dataset

Basic Transformations
Normalizing values 
Missing/Null data 
De-duplication 
Pivoting Data frames

Advanced Transformations
User Defined functions 
Joins and lookup tables 
Multiple databases

# Mount a data lake 
dbutils.fs.mount( 
  source = "abfss://<file-system-name>@<storage-account-name>.dfs.core.windows.net/", 
  mount_point = "/mnt/<mount-name>", 
  extra_configs = {config_key:key_name}) 
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# Load a dataframe 
%%pyspark 
df = spark.read.load('/data/products.csv', 
  # or 'abfss://container@store.dfs.core.windows.net/data/products.csv' 
    format='csv', 
    header=True 
) 
display(df.limit(10)) 
 
 
# Specify a schema for a dataframe to be loaded 
from pyspark.sql.types import * 
from pyspark.sql.functions import * 
 
productSchema = StructType([ 
    StructField("ProductID", IntegerType()), 
    StructField("ProductName", StringType()), 
    StructField("Category", StringType()), 
    StructField("ListPrice", FloatType()) 
    ]) 
 
df = spark.read.load('/data/product-data.csv', 
    format='csv', 
    schema=productSchema, 
    header=False) 
display(df.limit(10)) 
 
#Filtering 
pricelist_df = df["ProductID", "ListPrice"] 
bikes_df = df["ProductName", "ListPrice"].where((df["Category"]=="Mountain Bikes") | (df["C
ategory"]=="Road Bikes")) 
 
#Grouping 
counts_df = df.select("ProductID", "Category").groupBy("Category").count() 
 
 
# We can use the %%sql magic to run SQL code that queries objects in the catalog 
%%sql 
 
SELECT Category, COUNT(ProductID) AS ProductCount 
FROM products 
GROUP BY Category 
ORDER BY Category 
 
# PySpark code uses a SQL query to return data 
bikes_df = spark.sql("SELECT ProductID, ProductName, ListPrice \ 
                      FROM products \ 
                      WHERE Category IN ('Mountain Bikes', 'Road Bikes')") 
 
# Get the data as a Pandas dataframe 
data = spark.sql("SELECT Category, COUNT(ProductID) AS ProductCount \ 
                  FROM products \ 
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                  GROUP BY Category \ 
                  ORDER BY Category").toPandas()

✅ Delta lake
Delta Lake is an open-source storage layer for Spark that enables relational database 
capabilities for batch and streaming data. By using Delta Lake, you can implement a data 
lakehouse architecture in Spark to support SQL based data manipulation semantics with 
support for transactions and schema enforcement. The result is an analytical data store 
that offers many of the advantages of a relational database system with the flexibility of 
data file stored in a data lake.

The benefits of using Delta Lake in Azure Databricks include:

Relational tables that support querying and data modification. With Delta Lake, 
you can store data in tables that support CRUD (create, read, update, and delete) 
operations. In other words, you can select, insert, update, and delete rows of data in 
the same way you would in a relational database system.

Support for ACID transactions. Relational databases are designed to support 
transactional data modifications that provide atomicity (transactions complete as a 
single unit of work), consistency (transactions leave the database in a consistent 
state), isolation (in-process transactions can't interfere with one another), 
and durability (when a transaction completes, the changes it made are persisted). 
Delta Lake brings this same transactional support to Spark by implementing a 
transaction log and enforcing serializable isolation for concurrent operations.

Data versioning and time travel. Because all transactions are logged in the 
transaction log, you can track multiple versions of each table row, and even use 
the time travel feature to retrieve a previous version of a row in a query.

Support for batch and streaming data. While most relational databases include 
tables that store static data, Spark includes native support for streaming data through 
the Spark Structured Streaming API. Delta Lake tables can be used as 
both sinks (destinations) and sources for streaming data.

Standard formats and interoperability. The underlying data for Delta Lake tables is 
stored in Parquet format, which is commonly used in data lake ingestion pipelines. 
Additionally, you can use the serverless SQL pool in Azure Synapse Analytics to 
query Delta Lake tables in SQL.
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# Load a file into a dataframe 
df = spark.read.load('/data/mydata.csv', format='csv', header=True) 
 
# Save the dataframe as a delta table 
delta_table_path = "/delta/mydata" 
df.write.format("delta").save(delta_table_path) 
 
# Add new rows  
new_rows_df.write.format("delta").mode("append").save(delta_table_path)

After saving the delta table, the path location you specified includes parquet files for the 
data (regardless of the format of the source file you loaded into the dataframe) and 
a _delta_log folder containing the transaction log for the table.

Note: The transaction log records all data modifications to the table. By logging each 
modification, transactional consistency can be enforced and versioning information for the 
table can be retained.

# To make modifications to a Delta Lake table, you can use the DeltaTable object in the Del
ta Lake API, which supports update, delete, and merge operations. For example, you could us
e the following code to update the price column for all rows with a category column value o
f "Accessories" 
 
from delta.tables import * 
from pyspark.sql.functions import * 
 
# Create a deltaTable object 
deltaTable = DeltaTable.forPath(spark, delta_table_path) 
 
# Update the table (reduce price of accessories by 10%) 
deltaTable.update( 
    condition = "Category == 'Accessories'", 
    set = { "Price": "Price * 0.9" })

Query the previous version of a table
Delta Lake tables support versioning through the transaction log. The transaction log 
records modifications made to the table, noting the timestamp and version number for 
each transaction. You can use this logged version data to view previous versions of the 
table - a feature known as time travel.



💻 DP-203 Notes by Neil Bagchi 67

You can retrieve data from a specific version of a Delta Lake table by reading the data 
from the delta table location into a dataframe

df = spark.read.format("delta").option("versionAsOf", 0).load(delta_table_path) 
 
# OR 
 
df = spark.read.format("delta").option("timestampAsOf", '2022-01-01').load(delta_table_pat
h)

Query catalog tables
You can also define Delta Lake tables as catalog tables in the Hive metastore for your 
Spark cluster, and work with them using SQL.

Tables in a Spark catalog, including Delta Lake tables, can be managed or external; and 
it's important to understand the distinction between these kinds of tables.

A managed table is defined without a specified location, and the data files are stored 
within the storage used by the metastore. Dropping the table not only removes its 
metadata from the catalog but also deletes the folder in which its data files are stored.

An external table is defined for a custom file location, where the data for the table is 
stored. The metadata for the table is defined in the Spark catalog. Dropping the table 
deletes the metadata from the catalog, but doesn't affect the data files.

# Creating a catalog table from a dataframe 
# Save a dataframe as a managed table 
df.write.format("delta").saveAsTable("MyManagedTable") 
 
## specify a path option to save as an external table 
df.write.format("delta").option("path", "/mydata").saveAsTable("MyExternalTable") 
 
# Creating a catalog table using SQL 
spark.sql("CREATE TABLE MyExternalTable USING DELTA LOCATION '/mydata'") 
 
 
# We can use the DeltaTableBuilder API (part of the Delta Lake API) to create a catalog tab
le 
from delta.tables import * 
 
DeltaTable.create(spark) \ 
  .tableName("default.ManagedProducts") \ 
  .addColumn("Productid", "INT") \ 
  .addColumn("ProductName", "STRING") \ 
  .addColumn("Category", "STRING") \ 
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  .addColumn("Price", "FLOAT") \ 
  .execute() 

✅ Monitoring

1) Ganglia
Built-in databricks monitoring service that collects data every 15 min by default. We 
can access this option by going into the cluster and select Metrics from the header.

2) Azure Monitor
No native support for Databricks so setting this up is cumbersome.

Dropwizard is used to send application metrics of Azure Databricks to Azure Monitor 
whereas Log4j is used to send application logs to Azure Monitor.

Azure provides the Azure Databricks version for customers who love the features of Databricks Spark. It 
provides HDInsight Spark for customers who prefer OSS technologies, and it also provides Synapse 
Spark, which is a performance-boosted version of the OSS Spark for those customers who prefer an 

integrated single-pane experience within Azure Synapse Analytics.
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✅ Azure Synapse Analytics - OLAP
Run analytics at a massive scale by using a cloud-based 
enterprise data warehouse that takes advantage of massively 
parallel processing (MPP) to run complex queries quickly 
across petabytes of data.  
Azure Synapse brings together the best of SQL technologies used in 
enterprise data warehousing, Spark technologies used for big 
data, Data Explorer for log and time series analytics, Pipelines for 
data integration and ETL/ELT, and deep integration with other Azure 
services such as Power BI, CosmosDB, and AzureML.
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✅ ASA Top Level Concepts

1) Azure Synapse Pipelines 
are cloud-based ETL and data integration service that allows you to create data-driven 
workflows for orchestrating data movement and transforming data at scale. Azure 
Synapse uses Pipelines (the same Data Integration engine as Azure Data Factory), to 
create rich at-scale ETL pipelines.

2) Azure Synapse SQL 
Synapse SQL is a distributed query system for T-SQL that enables you to implement 
data warehouse solutions or perform data virtualization. Azure Synapse SQL offers both 
dedicated and serverless model of the service (more on this later).

3) Apache Spark for Azure Synapse 
Azure Synapse seamlessly integrates Apache Spark for data preparation, data 
engineering, ETL, and machine learning.

4) Azure Synapse Link 
This enables a Hybrid Transactional/Analytical Processing (HTAP) architecture by 
allowing near-real-time synchronization between operational data in Azure Cosmos DB, 

Synapse Analytics is a unified platform for using ADF, ADLS, Power BI, etc
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Azure SQL Database, SQL Server, and analytical data storage that can be queried in 
Azure Synapse Analytics.

5) Azure Synapse Data Explorer 
This provides an interactive query experience to unlock insights from log and telemetry 
data using the Kusto Query Language (KQL). Data Explorer analytics runtime is 
optimized for efficient log analytics.

6) Synapse Studio 
Synapse Studio provides a single way for enterprises to build solutions, maintain, and 
secure all in a single user experience using a web-based portal

Perform key tasks: ingest, explore, prepare, orchestrate, visualize

Monitor resources, usage, and users across SQL, Spark, and Data Explorer

Use Role-based access control to simplify access to analytics resources

Write SQL, Spark, or KQL code and integrate with enterprise CI/CD processes

✅ WORKSPACE (SYNAPSE STUDIO)

✅ Synapse Studio
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1) Data Hub
The Data hub is where you access your provisioned SQL pool databases and SQL 
serverless databases in your workspace, as well as external data sources, such as 
storage accounts and other linked services.

Under the Workspace (2) tab of the Data hub (1), expand the SQLPool01 (3) SQL 
pool underneath Databases.

Expand Tables and Programmability/Stored procedures.

The tables listed under the SQL pool store data from multiple sources, such as SAP 
Hana, Twitter, Azure SQL Database, and external files copied over from an 
orchestration pipeline. Synapse Analytics gives us the ability to combine these data 
sources for analytics and reporting, all in one location.
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You will also see familiar database components, such as stored procedures. You can 
execute the stored procedures using T-SQL scripts, or execute them as part of an 
orchestration pipeline.

Select the Linked tab, expand the Azure Data Lake Storage Gen2 group, then 
expand the primary storage for the workspace.
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Every Synapse workspace has a primary ADLS Gen2 account associated with it. This 
serves as the data lake, which is a great place to store flat files, such as files copied 
over from on-premises data stores, exported data or data copied directly from external 
services and applications, telemetry data, etc. Everything is in one place.

In our example, we have several containers that hold files and folders that we can 
explore and use from within our workspace. Here you can see marketing campaign 
data, CSV files, finance information imported from an external database, machine 
learning assets, IoT device telemetry, SAP Hana data, and tweets, just to name a few.

2) Develop
Expand each of the groups under the Develop menu. The Develop hub in our sample 
environment contains examples of the following artifacts:

SQL scripts contains T-SQL scripts 
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that you publish to your workspace. 
Within the scripts, you can execute 
commands against any of the 
provisioned SQL pools or on-
demand SQL serverless pools to 
which you have access.

Notebooks contain Synapse Spark 
notebooks used for data engineering 
and data science tasks. When you 
execute a notebook, you select a 
Spark pool as its compute target.

Data flows are powerful data 
transformation workflows that use 
the power of Apache Spark but are 
authored using a code-free GUI.

Power BI reports can be embedded 
here, giving you access to the 
advanced visualizations they provide 
without ever leaving the Synapse 
workspace.

3) Integrate
Manage integration pipelines within the Integrate hub. If you are familiar with Azure 
Data Factory, then you will feel at home in this hub. The pipeline creation experience 
is the same as in ADF, which gives you another powerful integration built into Synapse 
Analytics, removing the need to use Azure Data Factory for data movement and 
transformation pipelines.

Expand Pipelines and select Master Pipeline (1). Point out the Activities (2) that can 
be added to the pipeline, and show the pipeline canvas (3) on the right.

This Synapse workspace contains 16 pipelines that enable us to orchestrate data 
movement and transformation steps over data from several sources. 
The Activities list contains many activities that you can drag and drop onto the 
pipeline canvas on the right.
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4) Monitor
The Monitor hub is your first stop for debugging issues and gaining insight on resource 
usage. You can see a history of all the activities taking place in the workspace and 
which ones are active now.

Show each of the monitoring categories grouped under Integration and Activities.

Pipeline runs shows all pipeline run activities. You can view the run details, 
including inputs and outputs for the activities, and any error messages that 
occurred. You can also come here to stop a pipeline, if needed.

Trigger runs shows you all pipeline runs caused by automated triggers. You can 
create triggers that run on a recurring schedule or tumbling window. You can also 
create event-based triggers that execute a pipeline any time a blob is created or 
deleted in a storage container.
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Integration runtimes shows the status of all self-hosted and Azure integration 
runtimes.

Apache Spark applications shows all the Spark applications that are running or 
have run in your workspace.

SQL requests shows all SQL scripts executed either directly by you or another 
user, or executed in other ways, like from a pipeline run.

Data flow debug shows active and previous debug sessions. When you author a 
data flow, you can enable the debugger and execute the data flow without needing 
to add it to a pipeline and trigger an execute. Using the debugger speeds up and 
simplifies the development process. Since the debugger requires an active Spark 
cluster, it can take a few minutes after you enable the debugger before you can 
use it.

5) Manage
Show each of the management categories grouped under Analytics pools, External 
connections, Integration, and Security.

SQL pools. Lists the provisioned SQL pools and on-demand SQL serverless 
pools for the workspace. You can add new pools or hover over a SQL pool 
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to pause or scale it. You should pause a SQL pool when it's not being used to 
save costs.

Apache Spark pools. Lets you manage your Spark pools by configuring the auto-
pause and auto-scale settings. You can provision a new Apache Spark pool from 
this blade.

Linked services. Enables you to manage connections to external resources. 
Here you can see linked services for our data lake storage account, Azure Key 
Vault, Power BI, and Synapse Analytics. Task: Select + New to show how many 
types of linked services you can add.

Azure Purview (Preview). Provides integration with Azure Purview to provide 
data governance and lineage within Azure Synapse Analytics.

Triggers. Provides you a central location to create or remove pipeline triggers. 
Alternatively, you can add triggers from the pipeline.
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Integration runtimes. Lists the IR for the workspace, which serves as the 
compute infrastructure for data integration capabilities, like those provided by 
pipelines. Task: Hover over the integration runtimes to show the monitoring, code, 
and delete (if applicable) links. Click on a code link to show how you can modify 
the parameters in JSON format, including the TTL (time to live) setting for the IR.

Access control. This is where you go to add and remove users to one of three 
security groups: workspace admin, SQL admin, and Apache Spark for Azure 
Synapse Analytics admin.

Credentials. Contains objects that hold authentication information that can be 
used by Azure Synapse Analytics.

Managed private endpoints. This is where you manage private endpoints, which 
use a private IP address from within a virtual network to connect to an Azure 
service or your own private link service. Connections using private endpoints 
listed here provide access to Synapse workspace endpoints (SQL, SqlOndemand 
and Dev).

Workspace packages. Workspace packages can be custom code or a specific 
version of an open-source library that you would like to use in your Apache Spark 
pools held in the Azure Synapse Analytics Workspace.

Git configuration. Enables you to connect your workspace to a Git repository to 
enable source control

✅ SYNAPSE SQL (Important)

✅ Azure Synapse Architecture (dedicated SQL Pool)
When a user raises a work/query, the 
following happens:

Step 1: Applications connect and issue 
T-SQL commands to a Control node. 
The Control node is the brain of the 
architecture. It is the front end that 
interacts with all applications and 
connections. This node hosts the 
distributed query engine (MPP), which 
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optimizes the query for parallel 
processing.

Step 2: Control node provides commands to multiple compute nodes (the number 
depends on the option we selected during setup - DWU) which will work in parallel to 
compute the query. The Compute nodes provide the computational power. 
Distributions map to Compute nodes for processing.

Step 3: The Data Movement Service (DMS) is a system-level internal service that 
moves data across the nodes as necessary to run queries in parallel and return 
accurate results. The number of compute nodes ranges from 1 to 60 and is 
determined by the service level for Synapse SQL. 

Step 4: A key architectural component of dedicated SQL pools is the decoupled 
storage that is segmented into 60 parts. The data is shared by these distributions in 
the data layer to optimize the work performance. Distribution is the basic unit of 
storage and parallel queries process these distributed data. 

When Synapse SQL runs a query, the work is divided into 60 smaller queries that run 
in parallel. Each of the 60 smaller queries runs on one of the data distributions. Each 
Compute node manages one or more of the 60 distributions. Since there are 60 
storage segments and a maximum of 60 MPP compute nodes within the highest 
performance configuration of SQL Pools, a 1:1 file to compute node to storage 
segment may be viable for ultra-high workloads.

With decoupled storage and compute, when using a dedicated SQL pool, we 
can scale each of these independently.

📌 Azure Storage is divided into 60 segments called distributions 
Additionally, we can have max 60 compute nodes for computation 
So at the highest service level, each compute node will get 1 
distribution to work on. 
In other cases, each compute node can have more than 1 distributions 
to process.

For best practices, check this link.

✅ Azure Synapse Architecture (serverless SQL Pool)
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For a serverless SQL pool, being 
serverless, scaling is done automatically 
to accommodate query resource 
requirements. As topology changes over 
time by adding, removing nodes, or 
failovers, it adapts to changes and 
makes sure your query has enough 
resources and finishes successfully. For 
example, the following image shows a 
serverless SQL pool using four compute 
nodes to execute a query.

If you use Apache Spark for Azure Synapse in your data pipeline, for data 
preparation, cleansing, or enrichment, you can query external Spark tables 
you've created in the process, directly from the serverless SQL pool. (more on 
this later)

Serverless SQL Pool Dedicated SQL Pool

Perform unplanned or ad-hoc analysis work Build data warehouse

Only create external data tables If one needs to persist the data

Charged based on the amount of data processes
(as there’s no underlying infrastructure)

Charges based on DWU (Data Warehouse
Units)

For more detailed differences check this link. Also for best practices, check this.

✅ Designing a data warehouse (link)
Transactional Processing (OLTP) FACT &
DIMENSION TABLE

Analytical Processing (OLAP) FACT &
DIMENSION TABLE

Used for storing individual entries and
analysis on small sets of data

Analyses large batches of data

Access to recent data (maybe only 2022
data)

Access to older data going back years (all
historical data in order to perform analysis)

Updates data (individual transactions are
inserted, delete, and update)

Optimized for reading operations (only bulk data
should be uploaded, not optimized for individual
entries)



💻 DP-203 Notes by Neil Bagchi 82

Transactional Processing (OLTP) FACT &
DIMENSION TABLE

Analytical Processing (OLAP) FACT &
DIMENSION TABLE

Normalization concept applies and
architecture is generally SNOWFLAKE
schema

Strict adherence to normalization is not followed,
STAR schema is followed (i.e. one or more
dimension tables from SQL Database can be
merged and/or appended to get a single dimension
table in SQL Data Warehouse)

Faster real-time access Long-running jobs

Usually a single data source
Multiple data sources Dimension tables can be
connected from SQL Database, CSV files, and
more for analysis purposes

📌 Ideally, try to replace NULL values with some default values in the 
dimension tables, as not doing this can give undesired results while using 
reporting tools. 
A Fact table can have NULL values with the exception of the key columns 
which will be used for joining to the dimension table

Data integrity constraints
Dedicated SQL pools in Synapse Analytics don't support foreign 
key and unique constraints as found in other relational database systems like 
SQL Server. This means that jobs used to load data must maintain uniqueness and 
referential integrity for keys, without relying on the table definitions in the database to 
do so.

Transfer Data to a Dedicated SQL pool
In order to proceed ahead, we will need to set up a staging area where data from 
the SQL database is first stored before it is moved into Azure Synapse. 

-- Lab - Transfer data to our SQL Pool 
 
-- First let's ensure we have the tables defined in the SQL pool 
 
CREATE TABLE [dbo].[SalesFact]( 
 [ProductID] [int] NOT NULL, 
 [SalesOrderID] [int] NOT NULL, 
 [CustomerID] [int] NOT NULL, 
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 [OrderQty] [smallint] NOT NULL, 
 [UnitPrice] [money] NOT NULL, 
 [OrderDate] [datetime] NULL, 
 [TaxAmt] [money] NULL 
) 
 
CREATE TABLE [dbo].[DimCustomer]( 
 [CustomerID] [int] NOT NULL, 
 [StoreID] [int] NOT NULL, 
 [BusinessEntityID] [int] NOT NULL, 
 [StoreName] varchar(50) NOT NULL 
) 
 
CREATE TABLE [dbo].[DimProduct]( 
 [ProductID] [int] NOT NULL, 
 [ProductModelID] [int] NOT NULL, 
 [ProductSubcategoryID] [int] NOT NULL, 
 [ProductName] varchar(50) NOT NULL, 
 [SafetyStockLevel] [smallint] NOT NULL, 
 [ProductModelName] varchar(50) NULL, 
 [ProductSubCategoryName] varchar(50) NULL 
) 
 
SELECT * FROM [dbo].[SalesFact] 
SELECT COUNT(*) FROM [dbo].[SalesFact] 
 
SELECT * FROM [dbo].[DimCustomer] 
SELECT COUNT(*) FROM [dbo].[DimCustomer] 
 
SELECT * FROM [dbo].[DimProduct] 
SELECT COUNT(*) FROM [dbo].[DimProduct] 
 
-- If we need to drop the tables 
 
DROP TABLE [dbo].[SalesFact] 
 
DROP TABLE [dbo].[DimCustomer] 
 
DROP TABLE [dbo].[DimProduct]

Go to Synapse Studio → Integrate → Copy Data tool → Run Once now → Create 
connection (define source settings)→ Select Azure SQL Database → Fill details 
→ Select the required tables for copying → Create connection (define target 
settings) → Select Azure Synapse → Fill details → Option to select column 
mapping (if we want to drop certain columns) → Set the staging account details in 
the Settings option → In the advanced option we have option to select the copying 
procedure (PolyBase, Copy Command or Bulk insert) → review and deploy the 
pipeline
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Reading JSON Files

-- Lab - Reading JSON files 
 
-- Here we are using the OPENROWSET Function 
 
SELECT TOP 100 
    jsonContent 
FROM 
    OPENROWSET( 
        BULK 'https://appdatalake7000.dfs.core.windows.net/data/log.json', 
        FORMAT = 'CSV', 
        FIELDQUOTE = '0x0b', 
        FIELDTERMINATOR ='0x0b', 
        ROWTERMINATOR = '0x0a' --Ensure this is different from field terminator 
    ) 
    WITH ( 
        jsonContent varchar(MAX) 
    ) AS [rows] 
 
 
-- The above statement only returns all as a single string line by line 
-- Next we can cast to seperate columns 
 
 
SELECT  
   CAST(JSON_VALUE(jsonContent,'$.Id') AS INT) AS Id, 
   JSON_VALUE(jsonContent,'$.Correlationid') As Correlationid, 
   JSON_VALUE(jsonContent,'$.Operationname') AS Operationname, 
   JSON_VALUE(jsonContent,'$.Status') AS Status, 
   JSON_VALUE(jsonContent,'$.Eventcategory') AS Eventcategory, 
   JSON_VALUE(jsonContent,'$.Level') AS Level, 
   CAST(JSON_VALUE(jsonContent,'$.Time') AS datetimeoffset) AS Time, 
   JSON_VALUE(jsonContent,'$.Subscription') AS Subscription, 
   JSON_VALUE(jsonContent,'$.Eventinitiatedby') AS Eventinitiatedby, 
   JSON_VALUE(jsonContent,'$.Resourcetype') AS Resourcetype, 
   JSON_VALUE(jsonContent,'$.Resourcegroup') AS Resourcegroup 
FROM 
    OPENROWSET( 
        BULK 'https://appdatalake7000.dfs.core.windows.net/data/log.json', 
        FORMAT = 'CSV', 
        FIELDQUOTE = '0x0b', 
        FIELDTERMINATOR ='0x0b', 
        ROWTERMINATOR = '0x0a' 
    ) 
    WITH ( 
        jsonContent varchar(MAX) 
    ) AS [rows]
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Synapse SQL dedicated pools have 
three different types of tables 
indexing based on how the data is 
stored. 

Synapse dedicated pools support 
sharding for all these table types. 
They provide three different ways to 
shard the data, as follows:

1) Clustered columnstore 
2) Clustered index 
3) Heap

1) Hash 
2) Round-robin 
3) Replicated

These methods through which a SQL dedicated pool distributes data among its 
tables are also called distribution techniques. Sharding and distribution 
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techniques are overlapping technologies that are always specified together in 
SQL CREATE TABLE statements. 

✅ Table Types (Sharding Patterns for Dedicated SQL 
Pool i.e Horizontal Partitioning)
In a dedicated SQL pool, data is already distributed across its 60 distributions, so we 
need to be careful in deciding if we need to further partition the data. For example, if 
we plan to partition the data further by the months of a year, we are talking about 12 
partitions x 60 distributions = 720 sub-divisions. Each of these divisions needs to have 
at least 1 million rows; in other words, the table (usually a fact table) will need to have 
more than 720 million rows. So, we will have to be careful to not over-partition the data 
when it comes to dedicated SQL pools.

There are three different ways to distribute (shard) data among distributions :

1) Hash-distributed tables
(use this on a fact table with a hash column selected carefully)

Highest query performance for joins and aggregations on large tables

This works quicker if the query aggregation works on the hash column that we 
defined.

To shard data into a hash-distributed table, a hash function is used to 
deterministically assign each row to one distribution. In the table definition, one of 
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the columns is designated as the distribution column. The hash function uses the 
values in the distribution column to assign each row to a distribution deterministically. 
For eg, all the rows having category id less than 100 goes to one distribution, and so 
on.

When choosing the hash column, try to avoid columns having data skew as it would 
lead to uneven distribution of rows across the nodes. Also, avoid selecting the date 
column.

A quick way to check for data skew is to use DBCC PDW_SHOWSPACEUSED . The following SQL 
code returns the number of table rows that are stored in each of the 60 distributions. 
For balanced performance, the rows in your distributed table should be spread evenly 
across all the distributions.

- Find data skew for a distributed table 
DBCC PDW_SHOWSPACEUSED('dbo.FactInternetSales');

Consider using a hash-distributed table when:

The table size on the disk is more than 2 GB.

The table has frequent insert, update, and delete operations.

2. Replicated tables
(use it for dimension tables that are smaller in size <2 GB)

Fastest query performance for small tables 
Caches a full copy of the table on each compute node. Consequently, replicating a 
table removes the need to transfer data among compute nodes before a join or 
aggregation but incurs additional overhead.
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Don’t consider this table type if the table has a frequent insert, update, and delete 
operations as it will require a rebuild of the replicated table. A replicated table provides 
the fastest query performance for small tables which with compression should be less 
than 2GB as a starting point, static data can be larger.

3) Round-robin distributed tables
(default option during table creation)

Simplest table to create and delivers fast performance when used as a staging 
table for loads

A round-robin distributed table distributes data evenly across the table but without 
any further optimization. A distribution is first chosen at random and then buffers of 
rows are assigned to distributions sequentially. Joins on round-robin tables require 
reshuffling data, which takes additional time as it takes time to move data over from 
other nodes and collate all the rows together. 
Consider this option if there are no joins performed on the tables or in the case when 
we don’t have a clear candidate column for the hash distributed table.

Consider using the round-robin distribution for your table in the following scenarios:

When getting started as a simple starting point since it is the default

If there is no obvious joining key

If there is no good candidate column for hash distributing the table

If the table does not share a common join key with other tables
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If the join is less significant than other joins in the query

When the table is a temporary staging table

Summary

Type of
Distribution

Best Fit for… Do not use when…

Replicated

–Small dimension tables in a star
schema with less then 2 GB of
storage after the compression
(Synapse does 5x compression). -
Good for small lookup tables. -Good
for dimension tables that are
frequently joined with other big
tables.

-Many write transactions are on the
table (for example insert, delete and
updates). -If you change the
datawarehouse Units frequently. -
You only use 2 -3 columns out of
many columns in your tables. -you
are indexing a replicated table.

Round Robin
(default)

–Temporary /staging Table. –No
obvious joining key candidate is
found in the table or If your data
doesn’t frequently join with data from
other tables. –When you cannot
identify a single key to distribute your
data. –Small dimension table.

–Performance is slow due to data
movement

Hash

–Large Fact Tables or historical
Transaction tables are good
candidates. –Large dimension
tables.

–The distribution key can not be
updated –A nullable column is a bad
candidate for any hash distributed
table. –Fact tables that has a default
value in a column is also not a good
candidate to create a hash
distributed table.

To balance the parallel processing, select a distribution column or set of columns that:

Has many unique values. The distribution column(s) can have duplicate values. 
All rows with the same value are assigned to the same distribution. Since there 
are 60 distributions, some distributions can have > 1 unique value while others 
may end with zero values.

Does not have NULLs, or has only a few NULLs. For an extreme example, if all 
values in the distribution column(s) are NULL, all the rows are assigned to the 
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same distribution. As a result, query processing is skewed to one distribution, and 
does not benefit from parallel processing.

Is not a date column. All data for the same date lands in the same distribution or 
will cluster records by date. If several users are all filtering on the same date (such 
as today's date), then only 1 of the 60 distributions do all the processing work.

✅ Indexing
In SQL-based systems, you might be required to access rows using values other than 
the primary key. In such cases, the query engine needs to scan all the rows to find the 
value we are looking for. Instead, if we can define a secondary index based on 
frequently searched column values, we could avoid the complete table scans and 
speed up the query. The secondary index tables are calculated separately from the 
primary indexes of the table, but this is done by the same SQL engine.

A well-designed indexing strategy can reduce disk I/O operations and consume less 
system resources therefore improving query performance, especially when using 
filtering, scans, and joins in a query.

1) Clustered Columnstore Index (no secondary index)
By default for an Azure Synapse Dedicated SQL pool table, a clustered columnstore 
index gets created automatically. This provides the highest level of data 
compression and the best overall query performance. In a normal SQL database, 
the data is stored row by row but in SQL DataWarehouse, it is stored column by 
column. Clustered columnstore tables will generally outperform a clustered index or 
heap tables and are usually the best choice for large tables.

However, this kind of index can’t be created with columns that are of type varchar, 
nvarchar, varbinary. Also clustered columnstore index is not ideal for small tables 
having less than 60 million rows and also for transient data.



💻 DP-203 Notes by Neil Bagchi 91

📌 NOTE:  
Since a columnstore index scans a table by scanning column segments of 
individual rowgroups, maximizing the number of rows in each rowgroup 
enhances query performance. A rowgroup can have a maximum of 
1,048,576 rows. However, Columnstore indexes achieve good performance 
when rowgroups have at least 100,000 rows.

2) Clustered Index (allow secondary index, no compression)
Clustered index tables are row-based storage tables. They are usually faster for 
queries that need row lookups with highly selective filters on the clustered index 
column.

Clustered indexes may outperform clustered columnstore tables when a single row 
needs to be quickly retrieved. For queries where a single or very few row lookup is 
required to perform with extreme speed, consider a clustered index or nonclustered 
secondary index. 

The disadvantage to using a clustered index is that only queries that benefit are the 
ones that use a highly selective filter on the clustered index column. To improve the 
filter on other columns, a nonclustered index can be added to other columns. 
However, each index that is added to a table adds both space and processing time to 
loads.

3) Heap Table - Non-index option (allow secondary index, no 
compression)
If we want to create a staging table in our dedicated SQL pool for loading data and 
transferring it, we will have to create a Heap table. Heap tables are faster to load and 
subsequent reads can be done from the cache. For small lookup tables, with less than 
60 million rows, consider using HEAP or clustered index for faster query performance.

Code Example

-- Creating a heap table 
 
CREATE TABLE [dbo].[SalesFact_staging]( 
 [ProductID] [int] NOT NULL, 
 [SalesOrderID] [int] NOT NULL, 
 [CustomerID] [int] NOT NULL, 
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 [OrderQty] [smallint] NOT NULL, 
 [UnitPrice] [money] NOT NULL, 
 [OrderDate] [datetime] NULL, 
 [TaxAmt] [money] NULL 
) 
WITH(HEAP, 
DISTRIBUTION = ROUND_ROBIN --Usually used for fast loading of data 
) 
 
CREATE INDEX ProductIDIndex ON [dbo].[SalesFact_staging] (ProductID)  
--Explicitly create a non-clustered index since we are not using clustered table

Type Great fit for... Watch out if...

Heap
* Staging/temporary table *
Small tables with small
lookups

* Any lookup scans the full table

Clustered index

* Tables with up to 100
million rows * Large tables
(more than 100 million
rows) with only 1-2 columns
heavily used

* Used on a replicated table * You have
complex queries involving multiple join and
Group By operations * You make updates on
the indexed columns: it takes memory

Clustered
columnstore
index (CCI)
(default)

* Large tables (more than
100 million rows)

* Used on a replicated table * You make
massive update operations on your table *
You overpartition your table: row groups do
not span across different distribution nodes
and partitions

/*If you intend to use a snowflake schema in which dimension tables are related to one a
nother, you should include the key for the parent dimension in the definition of the chi
ld dimension table. For example, the following SQL code could be used to move the geogra
phical address details from the DimCustomer table to a separate DimGeography dimension t
able:*/ 
 
CREATE TABLE dbo.DimGeography 
( 
    GeographyKey INT IDENTITY NOT NULL, 
    GeographyAlternateKey NVARCHAR(10) NULL, 
    StreetAddress NVARCHAR(100), 
    City NVARCHAR(20), 
    PostalCode NVARCHAR(10), 
    CountryRegion NVARCHAR(20) 
) 
WITH 
( 
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    DISTRIBUTION = REPLICATE, 
    CLUSTERED COLUMNSTORE INDEX 
); 
 
CREATE TABLE dbo.DimCustomer 
( 
    CustomerKey INT IDENTITY NOT NULL, 
    CustomerAlternateKey NVARCHAR(15) NULL, 
    GeographyKey INT NULL, 
    CustomerName NVARCHAR(80) NOT NULL, 
    EmailAddress NVARCHAR(50) NULL, 
    Phone NVARCHAR(25) NULL 
) 
WITH 
( 
    DISTRIBUTION = REPLICATE, 
    CLUSTERED COLUMNSTORE INDEX 
); 
 
/*The following code example creates a hypothetical fact table named FactSales that is r
elated to multiple dimensions through key columns (date, customer, product, and store)*/ 
 
CREATE TABLE dbo.FactSales 
( 
    OrderDateKey INT NOT NULL, 
    CustomerKey INT NOT NULL, 
    ProductKey INT NOT NULL, 
    StoreKey INT NOT NULL, 
    OrderNumber NVARCHAR(10) NOT NULL, 
    OrderLineItem INT NOT NULL, 
    OrderQuantity SMALLINT NOT NULL, 
    UnitPrice DECIMAL NOT NULL, 
    Discount DECIMAL NOT NULL, 
    Tax DECIMAL NOT NULL, 
    SalesAmount DECIMAL NOT NULL 
) 
WITH 
( 
    DISTRIBUTION = HASH(OrderNumber), 
    CLUSTERED COLUMNSTORE INDEX 
); 
 
/*Staging tables are used as temporary storage for data as it's being loaded into the da
ta warehouse. The following code example creates a staging table for product data that w
ill ultimately be loaded into a dimension table:*/ 
 
CREATE TABLE dbo.StageProduct 
( 
    ProductID NVARCHAR(10) NOT NULL, 
    ProductName NVARCHAR(200) NOT NULL, 
    ProductCategory NVARCHAR(200) NOT NULL, 
    Color NVARCHAR(10), 
    Size NVARCHAR(10), 
    ListPrice DECIMAL NOT NULL, 
    Discontinued BIT NOT NULL 
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) 
WITH 
( 
    DISTRIBUTION = ROUND_ROBIN, 
    CLUSTERED COLUMNSTORE INDEX 
); 
 
/*In some cases, if the data to be loaded is in files with an appropriate structure, it
 can be more effective to create external tables that reference the file location. This
 way, the data can be read directly from the source files instead of being loaded into t
he relational store.*/ 
 
-- External data source links to data lake location 
CREATE EXTERNAL DATA SOURCE StagedFiles 
WITH ( 
    LOCATION = 'https://mydatalake.blob.core.windows.net/data/stagedfiles/' 
); 
GO 
 
-- External format specifies file format 
CREATE EXTERNAL FILE FORMAT ParquetFormat 
WITH ( 
    FORMAT_TYPE = PARQUET, 
    DATA_COMPRESSION = 'org.apache.hadoop.io.compress.SnappyCodec' 
); 
GO 
 
-- External table references files in external data source 
CREATE EXTERNAL TABLE dbo.ExternalStageProduct 
( 
    ProductID NVARCHAR(10) NOT NULL, 
    ProductName NVARCHAR(200) NOT NULL, 
    ProductCategory NVARCHAR(200) NOT NULL, 
    Color NVARCHAR(10), 
    Size NVARCHAR(10), 
    ListPrice DECIMAL NOT NULL, 
    Discontinued BIT NOT NULL 
) 
WITH 
( 
    DATA_SOURCE = StagedFiles, 
    LOCATION = 'products/*.parquet', 
    FILE_FORMAT = ParquetFormat 
);

✅ Table Partition
Logically splitting data into smaller manageable parts based on some column value 
e.g. splitting sales data by different provinces of Canada. Normally, data is 
partitioned on the date column. 
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As a result, partitioning helps is filtering data when using the WHERE clause in 
queries

Load Benefit: The primary benefit of partitioning in a dedicated SQL pool is to 
improve the efficiency and performance of loading data by use of partition deletion, 
switching, and merging. Partition switching can be used to quickly remove or replace a 
section of a table. Where deleting the individual rows could take hours, deleting an 
entire partition could take seconds.

Query Benefit: A query that applies a filter to partitioned data can limit the scan to 
only the qualifying partitions. This method of filtering can avoid a full table scan and 
only scan a smaller subset of data. With the introduction of clustered columnstore 
indexes, the predicate elimination performance benefits are less beneficial, but in 
some cases, there can be a benefit to queries.

Code Example

-- Lab - Creating a table with partitions 
 
DROP TABLE [logdata] 
 
CREATE TABLE [logdata] 
( 
  [Id] [int] NULL, 
 [Correlationid] [varchar](200) NULL, 
 [Operationname] [varchar](200) NULL, 
 [Status] [varchar](100) NULL, 
 [Eventcategory] [varchar](100) NULL, 
 [Level] [varchar](100) NULL, 
 [Time] [datetime] NULL, 
 [Subscription] [varchar](200) NULL, 
 [Eventinitiatedby] [varchar](1000) NULL, 
 [Resourcetype] [varchar](1000) NULL, 
 [Resourcegroup] [varchar](1000) NULL 
) 
 
COPY INTO logdata FROM 'https://datalake2000.blob.core.windows.net/data/cleaned/Lo
g.csv' WITH( FIRSTROW=2) 
 
-- Let's first inspect our table to see the range of dates 
 
SELECT FORMAT(Time,'yyyy-MM-dd') AS dt,COUNT(*) FROM logdata 
GROUP BY FORMAT(Time,'yyyy-MM-dd') 
 
/* Output will be partitioned by the date column For eg: 
  dt         (No column name)   ... 
  2021-01-01        501        ... 
  2021-01-02        45         ... 
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..  2021-01-31        240        ... 

.. 2021-12-01        11        ... and so on 
We can see that we don't have an even distribution of data across the dates*/ 
 
 
 
-- Let's drop the existing table if it exists 
DROP TABLE logdata 
 
 
-- Let's create a new table with partitions 
CREATE TABLE [logdata] 
( 
  [Id] [int] NULL, 
 [Correlationid] [varchar](200) NULL, 
 [Operationname] [varchar](200) NULL, 
 [Status] [varchar](100) NULL, 
 [Eventcategory] [varchar](100) NULL, 
 [Level] [varchar](100) NULL, 
 [Time] [datetime] NULL, 
 [Subscription] [varchar](200) NULL, 
 [Eventinitiatedby] [varchar](1000) NULL, 
 [Resourcetype] [varchar](1000) NULL, 
 [Resourcegroup] [varchar](1000) NULL 
) 
WITH 
( 
PARTITION ( [Time] RANGE RIGHT FOR VALUES 
            ('2021-04-01','2021-05-01','2021-06-01') 
   )   
) 
/* First partition is any data <1st April,  
  2nd partition between 1st Apr and 1st may,  
   3rd partition between 1st May and 1st June  
   4th any date >= 1st June */ 
 
 
-- Copy data into the table 
COPY INTO logdata FROM 'https://datalake2000.blob.core.windows.net/data/cleaned/Lo
g.csv' WITH ( FIRSTROW=2 ) 
 
 
-- View the partitions 
SELECT  QUOTENAME(s.[name])+'.'+QUOTENAME(t.[name]) as Table_name 
,       i.[name] as Index_name 
,       p.partition_number as Partition_nmbr 
,       p.[rows] as Row_count 
,       p.[data_compression_desc] as Data_Compression_desc 
FROM    sys.partitions p 
JOIN    sys.tables     t    ON    p.[object_id]   = t.[object_id] 
JOIN    sys.schemas    s    ON    t.[schema_id]   = s.[schema_id] 
JOIN    sys.indexes    i    ON    p.[object_id]   = i.[object_Id] 
                            AND   p.[index_Id]    = i.[index_Id] 
WHERE t.[name] = 'logdata' 
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/* The Output is: 
  Table_name        ...   Partition_nmbr  Row_count   Data_compression_desc 
  [dbo].[logdata]   ...          1           250          COLUMNSTORE 
  [dbo].[logdata]   ...          2           250          COLUMNSTORE 
   [dbo].[logdata]   ...          3           250          COLUMNSTORE 
   [dbo].[logdata]   ...          4           250          COLUMNSTORE */

Partition Switching

-- Lab - Switching partitions 
 
-- Create a new table with partitions 
-- Switch partitions 
-- This can be done with the Alter command.  
-- But the alter command will not work if the table has a clustered column store in
dex 
-- When using the CREATE TABLE AS, we need to mention a distribution type 
 
 
CREATE TABLE [logdata_new] 
WITH 
( 
DISTRIBUTION = ROUND_ROBIN, --Default option 
PARTITION ( [Time] RANGE RIGHT FOR VALUES 
            ('2021-05-01','2021-06-01') 
 
   ) )  
AS 
SELECT *  
FROM logdata 
WHERE 1=2 --Since its always false, it will just copy the schema of the logdata to
 the logadata_new 
 
 
-- Switch the partitions and then see the data 
 
ALTER TABLE [logdata] SWITCH PARTITION 2 TO [logdata_new] PARTITION 1; 
--Data from portion 2 is going to be moved only and the previous logdata table will 
be left with partitions 1,3,4 
 
 
SELECT count(*) FROM [logdata_new] 
SELECT FORMAT(Time,'yyyy-MM-dd') AS dt,COUNT(*) FROM logdata_new 
GROUP BY FORMAT(Time,'yyyy-MM-dd')

✅ Slowly Changing Dimensions (SCD)



💻 DP-203 Notes by Neil Bagchi 98

Slowly changing dimensions (SCD) are tables in a 
dimensional model that handle changes to dimension values 
over time and not on a set schedule.

Over time, it is possible that certain product name changes or maybe a customer 
changes phone number. This will lead to the case where we will have to change the 
dimension table to reflect these changes. There are various strategies to tackle the 
different cases.

• Type 1

A Type 1 SCD always reflects the latest values, and when 
changes in source data are detected, the dimension table 
data is overwritten

E.g. When a customer's email address or phone number changes, the dimension 
table updates the customer row with the new values.

Link to an example showing the detailed implementation steps

• Type 2 (important):

A Type 2 SCD supports the versioning of dimension 
members. It includes columns that define the date range 
validity of the version (for example,  StartDate  and  EndDate ) 
and possibly a flag column (for example,  IsCurrent ) to 
easily filter by current dimension members.
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Current versions may define an empty end date (or 12/31/9999), which indicates 
that the row is the current version. The table must also define a surrogate key 
because the business key (in this instance, employee ID) won't be unique.

📌 NOTE: Surrogate keys are secondary row identification keys. They are 
added in all SCD2 cases because the primary identification key will not 
be unique anymore with newly added rows.

Code to apply type 1 and 2 logic

/*Logic to implement Type 1 and Type 2 updates can be complex, and there are var
ious techniques you can use. For example, you could use a combination of UPDATE
 and INSERT statements as shown in the following code example:*/ 
 
-- Insert new customers 
INSERT INTO dbo.DimCustomer 
SELECT stg.CustomerNo, 
       stg.CustomerName, 
       stg.EmailAddress, 
       stg.Phone, 
       stg.StreetAddress 
FROM dbo.StageCustomers AS stg 
WHERE NOT EXISTS 
    (SELECT * FROM dbo.DimCustomer AS dim 
     WHERE dim.CustomerAltKey = stg.CustomerNo); 
 
-- Type 1 updates (name, email, phone) 
UPDATE dbo.DimCustomer 
SET CustomerName = stg.CustomerName, 
    EmailAddress = stg.EmailAddress, 
    Phone = stg.Phone 
FROM dbo.StageCustomers AS stg 
WHERE dbo.DimCustomer.CustomerAltKey = stg.CustomerNo; 
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-- Type 2 updates (geographic address) 
INSERT INTO dbo.DimCustomer 
SELECT stg.CustomerNo AS CustomerAltKey, 
       stg.CustomerName, 
       stg.EmailAddress, 
       stg.Phone, 
       stg.StreetAddress, 
       stg.City, 
       stg.PostalCode, 
       stg.CountryRegion 
FROM dbo.StageCustomers AS stg 
JOIN dbo.DimCustomer AS dim 
ON stg.CustomerNo = dim.CustomerAltKey 
AND stg.StreetAddress <> dim.StreetAddress; 
 
/*As an alternative to using multiple INSERT and UPDATE statement, you can use a 
single MERGE statement to perform an "upsert" operation to insert new records an
d update existing ones, as shown in the following example, which loads new produ
ct records and applies type 1 updates to existing products*/ 
 
MERGE dbo.DimProduct AS tgt 
    USING (SELECT * FROM dbo.StageProducts) AS src 
    ON src.ProductID = tgt.ProductBusinessKey 
WHEN MATCHED THEN 
    UPDATE SET 
        tgt.ProductName = src.ProductName, 
        tgt.ProductCategory = src.ProductCategory 
        tgt.Color = src.Color, 
        tgt.Size = src.Size, 
        tgt.ListPrice = src.ListPrice, 
        tgt.Discontinued = src.Discontinued 
WHEN NOT MATCHED THEN 
    INSERT VALUES 
        (src.ProductID, 
         src.ProductName, 
         src.ProductCategory, 
         src.Color, 
         src.Size, 
         src.ListPrice, 
         src.Discontinued); 
 
/*Another way to load a combination of new and updated data into a dimension tab
le is to use a CREATE TABLE AS (CTAS) statement to create a new table that conta
ins the existing rows from the dimension table and the new and updated records f
rom the staging table. After creating the new table, you can delete or rename th
e current dimension table, and rename the new table to replace it.*/ 
 
CREATE TABLE dbo.DimProductUpsert 
WITH 
( 
    DISTRIBUTION = REPLICATE, 
    CLUSTERED COLUMNSTORE INDEX 
) 
AS 
-- New or updated rows 
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SELECT  stg.ProductID AS ProductBusinessKey, 
        stg.ProductName, 
        stg.ProductCategory, 
        stg.Color, 
        stg.Size, 
        stg.ListPrice, 
        stg.Discontinued 
FROM    dbo.StageProduct AS stg 
UNION ALL   
-- Existing rows 
SELECT  dim.ProductBusinessKey, 
        dim.ProductName, 
        dim.ProductCategory, 
        dim.Color, 
        dim.Size, 
        dim.ListPrice, 
        dim.Discontinued 
FROM    dbo.DimProduct AS dim 
WHERE NOT EXISTS 
(   SELECT  * 
    FROM dbo.StageProduct AS stg 
    WHERE stg.ProductId = dim.ProductBusinessKey 
); 
 
RENAME OBJECT dbo.DimProduct TO DimProductArchive; 
RENAME OBJECT dbo.DimProductUpsert TO DimProduct;

• Type 3:

A Type 3 SCD supports storing two versions of a 
dimension member as separate columns.

Here instead of having multiple rows to signify changes, we have multiple columns. 
We do have an effective/modified date column to show when the change took 
place.
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• Type 6:

A Type 6 SCD combines Type 1, 2, and 3. In Type 6 design 
we also store the current value in all versions of that entity 
so you can easily report the current value or the historical 
value.

✅ Window Functions (also used in stream analytics)
A window function enables you to perform a mathematical equation on a set of data 
that is defined within a window. The mathematical equation is typically an aggregate 
function; however, instead of applying the aggregate function to all the rows in a table, 
it is applied to a set of rows that are defined by the window function, and then the 
aggregate is applied to it.

A suite of functions that are helpful and easier compared to complex queries since 
they reduce the need for intermediate tables to store temporary data. These functions 
are used only when we have a requirement to work with a specific window/time period.

For e.g.   
Running Total of Revenue for each Week,  
Top N products for a week’s sale,  
Moving Averages over the last 3 rows

When using the windowing function with SQL pools, we will use the OVER clause. 
This clause determines the partitioning and ordering of a rowset before the window 
function is applied.

Code Example
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-- Lab - Windowing Functions 
 
SELECT 
ROW_NUMBER() OVER( 
   PARTITION BY [ProductID]  
   ORDER BY [OrderQty]) AS "Row Number" 
,[ProductID] 
,[CustomerID] 
,[OrderQty] 
,[UnitPrice] 
FROM [dbo].[SalesFact] 
ORDER BY [ProductID] 
 
/* Output will be partitioned by the Product Id column For eg: 
 Row num    ProdId   ...   ...   ... 
  1         700     ... 
  2         700     ... 
..  12        700     ... 
  1         701     ... and so on*/ 
 
 
SELECT 
ROW_NUMBER() OVER( 
   PARTITION BY [ProductID]  
   ORDER BY [OrderQty]) AS "Row Number" 
,[ProductID] 
,[CustomerID] 
,[OrderQty] 
,SUM([OrderQty]) OVER( 
    PARTITION BY [ProductID]) AS TotalOrderQty 
,[UnitPrice] 
FROM [dbo].[SalesFact] 
ORDER BY [ProductID] 
 
 
#Running Sum - Order by day 
FROM groceries 
SELECT id 
,revenue 
, day 
,SUM(revenue) over (order by day) as running_total;

✅ Surrogate Keys
Generally, data for dimension tables can come from multiple sources and if the 
primary key column for these tables is the same then we won’t have a way to 
distinguish between the different rows. Thus we would want to have surrogate keys 
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to distinguish the rows (as simple as a new index column). The surrogate key is also 
referred to as a non-business key

Code Example

-- Lab - Surrogate keys for dimension tables 
 
-- First let's ensure we have the tables defined in the SQL pool 
-- Let's do this for one dimension table 
 
-- First drop the table if you have it in place 
 
DROP TABLE [dbo].[DimProduct] 
 
CREATE TABLE [dbo].[DimProduct]( 
 [ProductSK] [int] IDENTITY(1,1) NOT NULL, --destination table surrogate key colum
n 
--the values will be generated automatically but not necessarily in incrementing fa
shion 
 [ProductID] [int] NOT NULL, 
 [ProductModelID] [int] NOT NULL, 
 [ProductSubcategoryID] [int] NOT NULL, 
 [ProductName] varchar(50) NOT NULL, 
 [SafetyStockLevel] [smallint] NOT NULL, 
 [ProductModelName] varchar(50) NULL, 
 [ProductSubCategoryName] varchar(50) NULL 
)

✅ Dynamic data masking

Dynamic data masking helps prevent unauthorized access to 
sensitive data by enabling customers to designate how much of 
the sensitive data to reveal with minimal impact on the application 
layer. It's a policy-based security feature that hides the sensitive 
data in the result set of a query over designated database fields, 
while the data in the database is not changed.

No change in the physical layer 
• Data in the database is not changed 
• Not the same as data encryption
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No additional development effort is needed at the application level

Security: Should not be used as a primary security layer 
• DDM should not be used as an isolated measure to fully secure sensitive data 
• ad-hoc query permissions can apply techniques to gain access to the actual 
data.

Other considerations 
• Masked columns can be updated if the user has permission 
• Export masked from source data results in masked data in the target table

Function Description Examples

Default

Full masking according to the data types of the
designated fields. For string data types, use
XXXX or fewer Xs if the size of the field is fewer
than 4 characters. For numeric data types use a
zero value. For date and time data types use
01.01.1900 00:00:00.0000000. For binary data
types use a single byte of ASCII value 0.

Example column
definition syntax:  Phone#
varchar(12) MASKED WITH
(FUNCTION = 'default()')
NULL

Email
Masking method that exposes the first letter of
an email address and the constant suffix ".com",
in the form of an email address aXXX@XXXX.com .

Example definition
syntax:  Email varchar(100)
MASKED WITH (FUNCTION =
'email()') NULL
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Function Description Examples

Random
A random masking function for use on any
numeric type to mask the original value with a
random value within a specified range.

Example definition
syntax:  Account_Number
bigint MASKED WITH
(FUNCTION = 'random([start
range], [end range])')

Custom String

Masking method that exposes the first and last
letters and adds a custom padding string in the
middle.  prefix,[padding],suffix  Note: If the
original value is too short to complete the entire
mask, part of the prefix or suffix won't be
exposed.

Example definition
syntax:  FirstName
varchar(100) MASKED WITH
(FUNCTION =
'partial(prefix,
[padding],suffix)') NULL

Code Example

-- Azure Example 
--DROP TABLE TestDDM  
Create table TestDDM  
              (ID Int,  
              PersonName varchar (100),  
              EmailAddress varchar(120),  
              CreditCardNumber varchar(19),  
              SocialSecurityNumber varchar(11) 
) 
 
INSERT INTO TestDDM  Values (1, 'Anoop Kumar','abcdefgh@hotmail.com','1234-5678-432
1-8765','123-45-6789') 
INSERT INTO TestDDM  Values (1, 'Rahul Gupta','amitguptaabcdefg@hotmail.com','8765-
1234-5678-4321','231-45-6787') 
INSERT INTO TestDDM  Values (1, 'Amit Goel','amitgoelabcdefgh@hotmail.com','4321-12
34-5678-4321','321-45-6700') 
  
SELECT * FROM TestDDM 
 
/* After this we can go into Azure -> Security -> Dynamic Data masking where we can 
provide all the functions. Similar task can be done from SQL query as well */ 
 
-- SQL Server Example 
 
CREATE TABLE Membership   
  (MemberID int IDENTITY PRIMARY KEY,   
   FirstName varchar(100) MASKED WITH (FUNCTION = 'partial(1,"XXXXXXX",0)') NULL,   
   LastName varchar(100) NOT NULL,   
   Phone varchar(12) MASKED WITH (FUNCTION = 'default()') NULL,   
   Email varchar(100) MASKED WITH (FUNCTION = 'email()') NULL);
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✅ Workload management

Workload management is the process of allowing 
administrators to control certain aspects of the warehouse to 
perform at optimal levels when executing tasks such as 
loading and transforming data.

Dedicated SQL pool workload management in Azure Synapse consists of three high-
level concepts:

Workload Classification

Workload management classification allows workload policies to be applied to 
requests through assigning resource classes and importance. 
The simplest and most common classification is load and query. For eg, having a 
workload policy for load activity assigning it a higher resource class with more 
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resources and another workload policy for querying, providing it lower importance 
compared to load activities.

Workload Importance

Workload importance influences the order in which a request gets access to 
resources. On a busy system, a request with higher importance has first access to 
resources. There are five levels of importance: low, below_normal, normal, 
above_normal, and high. Requests that don't set importance are assigned the 
default level of normal.

Workload Isolation

Workload isolation reserves resources for a workload group. Resources reserved 
in a workload group are held exclusively for that workload group to ensure 
execution. Workload groups give you the ability to reserve or cap the amount of 
resources a set of requests can consume. Finally, workload groups are a 
mechanism to apply rules, such as query timeout, to requests.

/* We can create multiple workload groups in order to provision compute resources such t
hat two different tasks such that an user loading data doesn't use the full resource cap
acity when an user already performing some analysis job*/ 
 
CREATE WORKLOAD GROUP DataLoads --Workload Isolation 
WITH (  
    MIN_PERCENTAGE_RESOURCE = 80 
    ,CAP_PERCENTAGE_RESOURCE = 100 
    ,REQUEST_MIN_RESOURCE_GRANT_PERCENT = 4 -- factor of 80 (guaranteed more than 20 con
currencies) 
    ); 
--[Max Concurrency] = [CAP_PERCENTAGE_RESOURCE] / [REQUEST_MIN_RESOURCE_GRANT_PERCENT] 
 
CREATE WORKLOAD CLASSIFIER [ELTLogin] --Workload Classification 
WITH ( 
     WORKLOAD_GROUP = 'DataLoads' 
    ,MEMBERNAME = 'user_load' 
  ,IMPORTANCE = High  -- Workload Importance 
);

✅ Materialized Views
Views are logical projections of data from multiple tables. A standard view computes 
its data each time when the view is used. There's no data stored on disk. A 
materialized view pre-computes, stores, and maintains its data in a dedicated 
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SQL pool just like a table. They are not supported by default in serverless SQL 
pools. Recomputation isn't needed each time a materialized view is used. That's why 
queries that use all or a subset of the data in materialized views can gain faster 
performance.

Comparison View Materialized View

View definition
Stored in Azure
data warehouse.

Stored in Azure data warehouse.

View content
Generated each
time when the
view is used.

Pre-processed and stored in Azure data warehouse
during view creation. Updated as data is added to
the underlying tables.

Data refresh Always updated Always updated

Speed to retrieve
view data from
complex queries

Slow Fast

Extra storage No Yes

Syntax CREATE VIEW CREATE MATERIALIZED VIEW AS SELECT

Materialized views results in increased performance since the data within the view can 
be fetched without having to resolve the underlying query to base tables. You can also 
further filter and supplement other queries as if it is a table also. In addition, you also 
can define a different table distribution within the materialized view definition that is 
different from the table on which it is based. As the data in the underlying base tables 
change, the data in the materialized view will automatically update without user 
interaction.

There are several restrictions that you must be aware of before defining a materialized 
view:

The SELECT list in the materialized view definition needs to meet at least one of 
these two criteria:

The SELECT list contains an aggregate function.

GROUP BY is used in the Materialized view definition and all columns in 
GROUP BY are included in the SELECT list. Up to 32 columns can be used in 
the GROUP BY clause.

Supported aggregations include MAX, MIN, AVG, COUNT, COUNT_BIG, SUM, 
VAR, STDEV.
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Only the hash and round_robin table distribution is supported in the definition.

Only CLUSTERED COLUMNSTORE INDEX is supported by materialized view.

CREATE MATERIALIZED VIEW [ schema_name. ] materialized_view_name 
    WITH (   
      <distribution_option> 
    ) 
    AS <select_statement> 
[;] 
 
<distribution_option> ::= 
    {   
        DISTRIBUTION = HASH ( distribution_column_name )   
      | DISTRIBUTION = HASH ( [distribution_column_name [, ...n]] )  
      | DISTRIBUTION = ROUND_ROBIN   
    } 
 
<select_statement> ::= 
    SELECT select_criteria

--Example 
--When MIN/MAX aggregates are used in the SELECT list of materialized view definition, F
OR_APPEND is required 
 
CREATE MATERIALIZED VIEW mv_test2   
WITH (distribution = hash(i_category_id), FOR_APPEND)   
AS 
SELECT MAX(i.i_rec_start_date) as max_i_rec_start_date, MIN(i.i_rec_end_date) as min_i_r
ec_end_date, i.i_item_sk, i.i_item_id, i.i_category_id 
FROM syntheticworkload.item i   
GROUP BY i.i_item_sk, i.i_item_id, i.i_category_id

✅ Result set Caching
Caching refers to storing intermediate data in faster storage layers to speed up 
queries. When result set caching is enabled, a dedicated SQL pool automatically 
caches query results in the user database for repetitive use. Thus, enable resultset 
caching when you expect results from queries to return the same values.

This option stores a copy of the result set on the control node so that queries do not 
need to pull data from the storage subsystem or compute nodes. The capacity for the 
resultset cache is 1 TB and the data within the resultset cache is expired and purged 
after 48 hours of not being accessed.
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Azure Synapse SQL automatically caches query results in the user database for 
repetitive use. Resultset caching allows subsequent query executions to get results 
directly from the persisted cache so recomputation is not needed. Result set caching 
improves query performance and reduces compute resource usage.

To enable result set caching, run this command when connecting to the MASTER 
database.

ALTER DATABASE [database_name] 
SET RESULT_SET_CACHING ON;

✅ Row and Column Level Security
Column-level security simplifies the design and coding of security in your 
application, allowing you to restrict column access to protect sensitive data. For 
example, ensuring those specific users can access only certain columns of a table 
pertinent to their department. The way to implement column-level security is by using 
the GRANT T-SQL statement.

GRANT <permission> [ ,...n ] ON 
    [ OBJECT :: ][ schema_name ]. object_name [ ( column [ ,...n ] ) ] // specifying the 
column access 
    TO <database_principal> [ ,...n ]

Row-level security (RLS) can help you to create a group membership or execution 
context in order to control not just columns in a database table, but actually, the rows. 
The way to implement RLS is by using the CREATE SECURITY POLICY  statement. For 
reading more.

✅ Transparent Data Encryption
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Transparent data encryption (TDE) helps protect Azure Synapse Analytics against the 
threat of malicious offline activity by encrypting data at rest. It performs real-time 
encryption and decryption of the database, associated backups, and transaction log 
files at rest without requiring changes to the application. It is enabled by default.

Managed identities provide Azure services with an automatically managed identity in 
Azure Active Directory. You can use the Managed Identity capability to authenticate to 
any service that supports Azure Active Directory authentication.

✅ Statistics to improve query performance
When queries are submitted, a dedicated SQL pool query optimizer tries to determine 
which access paths to the data will result in the least amount of effort to retrieve the 
data required to resolve the query. It is a cost-based optimizer that compares the cost 
of various query plans and then chooses the plan with the lowest cost. After loading 
data into a dedicated SQL pool, collecting statistics on your data is one of the most 
important things you can do for query optimization.

It tracks cardinality and range density to determine which data access paths 
return the fewest rows for speed.

For example, if the optimizer estimates that the date your query is filtering on will 
return one row, it will choose one plan. If it estimates that the selected date will return 
1 million rows, it will return a different plan.

✅ Scale Compute Resources
In SQL pools, the unit of scale is an abstraction of compute power that is known as a 
data warehouse unit. Compute is separate from storage, which enables you to scale 
compute independently of the data in your system. This means you can scale up and 
scale down the compute power to meet your needs.

You can scale a Synapse SQL pool either through the Azure portal, Azure Synapse 
Studio or programmatically using TSQL or PowerShell.
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✅ DATA EXPLORER (optional)
If you want to learn more about this, click here.

✅
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✅ APACHE SPARK (Important)
Apache Spark processes large amounts of data in-memory, which boosts the 
performance of analyzing big data more effectively, and this capability is available 
within Azure Synapse Analytics referred to as Spark pools. 

Spark pool clusters are groups of computers that are treated as a single computer and 
handle the execution of commands issued from notebooks. The clusters allow the 
processing of data to be parallelized across many computers to improve scale and 
performance. It consists of a Spark Driver and Worker nodes. Spark pools in Azure 
Synapse can use Azure Data Lake Storage Generation 2 as well as BLOB 
storage.

The primary use case for Apache Spark for Azure Synapse Analytics is to process big 
data workloads that cannot be handled by Azure Synapse SQL, and where you don’t 
have an existing Apache Spark implementation.

There are two ways within Synapse to use Spark:

Spark Notebooks for doing Data Science and Engineering use Scala, PySpark, 
C#, and SparkSQL

Spark job definitions for running batch Spark jobs using jar files.

Link to an example showing the detailed implementation steps

Indexing
In Azure, we have technologies that can perform indexing on huge volumes of data. 
These indexes can then be used by analytical engines such as Spark to speed up the 
queries. One such technology that Azure offers is called Hyperspace.

Hyperspace lets us create indexes on input datasets such as Parquet, CSV, and so 
on, which can be used for query optimization. The Hyperspace indexing needs to be 
run separately to create an initial index. After that, it can be incrementally updated for 
the new data. Once we have the Hyperspace index, any Spark query can leverage the 
index, similar to how we use indexes in SQL.

✅ Delta lake
Delta Lake is an open-source storage layer for Spark that enables relational 
database capabilities for batch and streaming data. By using Delta Lake, you can 
implement a data lakehouse architecture in Spark to support SQL_based data 
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manipulation semantics with support for transactions and schema enforcement. The 
result is an analytical data store that offers many of the advantages of a relational 
database system with the flexibility of data file stored in a data lake.

The benefits of using Delta Lake include:

Relational tables that support querying and data modification. With Delta 
Lake, you can store data in tables that support CRUD (create, read, update, and 
delete) operations. In other words, you can select, insert, update, and delete rows 
of data in the same way you would in a relational database system.

Support for ACID transactions. Relational databases are designed to support 
transactional data modifications that provide atomicity (transactions complete as a 
single unit of work), consistency (transactions leave the database in a consistent 
state), isolation (in-process transactions can't interfere with one another), 
and durability (when a transaction completes, the changes it made are persisted). 
Delta Lake brings this same transactional support to Spark by implementing a 
transaction log and enforcing serializable isolation for concurrent operations.

Data versioning and time travel. Because all transactions are logged in the 
transaction log, you can track multiple versions of each table row, and even use 
the time travel feature to retrieve a previous version of a row in a query.

Support for batch and streaming data. While most relational databases include 
tables that store static data, Spark includes native support for streaming data 
through the Spark Structured Streaming API. Delta Lake tables can be used as 
both sinks (destinations) and sources for streaming data.

Delta Lake for Streaming Data

✅ Integrate SQL and Apache Spark Pools
The Apache Spark to Synapse SQL connector is designed to efficiently transfer data 
between serverless Apache Spark pools and dedicated SQL pools in Azure Synapse. 
At the moment, the Azure Synapse Apache Spark to Synapse SQL connector works 
on dedicated SQL pools only, it doesn't work with serverless SQL pools.

The JDBC API opens the connection, filters, and applies projections, and Apache 
Spark reads the data serially. Given that two distributed systems such as Apache 
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Spark and SQL pools are being used, using the JDBC API becomes a bottleneck with 
a serial transfer of data.

Therefore, a new approach is to use both JDBC and PolyBase. First, the JDBC opens 
a connection, issues Create External Tables As Select (CETAS) statements, and 
sends filters and projections. The filters and projections are then applied to the data 
warehouse and exported in parallel using PolyBase. Apache Spark reads the data in 
parallel based on the user-provisioned workspace and the default data lake storage.

As a result, you can use the Azure Synapse Apache Spark Pool to Synapse SQL 
connector to transfer data between a Data Lake store via Apache Spark and 
dedicated SQL Pools efficiently.

When you deploy an Azure Synapse Apache Spark cluster, the Azure Data Lake 
Gen2 capability enables you to store Apache Spark SQL Tables within it. If you 
use Apache Spark SQL tables, these tables can be queried from a SQL-based 
Transact-SQL language without needing to use commands like CREATE 
EXTERNAL TABLE. Within Azure Synapse Analytics, these queries integrate 
natively with data files that are stored in an Apache Parquet format.

The integration can be helpful in use cases where you perform an ETL process 
predominately using SQL but need to call on the computation power of Apache Spark 
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to perform a portion of the extract, transform, and load (ETL) process as it is more 
efficient.

Authentication
The authentication between the two systems is made seamless in Azure Synapse 
Analytics. The Token Service connects with Azure Active Directory to obtain the 
security tokens to be used when accessing the storage account or the data 
warehouse in the dedicated SQL pool.

For this reason, there's no need to create credentials or specify them in the connector 
API if Azure AD-Auth is configured at the storage account and the dedicated SQL 
pool. If not, SQL Authentication can be specified. The only constraint is that this 
connector only works in Scala.

Read more

Monitor and Manage workloads

✅ Scale Compute Resources
Apache Spark pools for Azure Synapse Analytics uses an Autoscale feature that 
automatically scales the number of nodes in a cluster instance up and down. During 
the creation of a new Spark pool, a minimum and maximum number of nodes can be 
set when Autoscale is selected. Autoscale then monitors the resource requirements 
of the load and scales the number of nodes up or down. To enable the Autoscale 
feature, complete the following steps as part of the normal pool creation process:

1. On the Basics tab, select the Enable autoscale checkbox.

2. Enter the desired values for the following properties:

Min number of nodes.

Max number of nodes.

The initial number of nodes will be the minimum. This value defines the initial size of 
the instance when it's created. The minimum number of nodes can't be fewer than 
three.

You can also modify this in the Azure portal, you can click on the auto-scale 
settings icon
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✅ SYNAPSE LINK
Hybrid Transactional and Analytical Processing enables businesses to perform 
analytics over a database system that is seen to provide transactional capabilities 
without impacting the performance of the system. This enables organizations to use a 
database to fulfill both transactional and analytical needs to support near real-time 
analysis of operational data to make decisions about the information that is being 
analyzed.

In an HTAP solution, the transactional data is replicated automatically, with low 
latency, to an analytical store, where it can be queried without impacting the 
performance of the transactional system.

Link to an example showing the detailed implementation steps

Synapse Link for SQL - Learn more here or here.

✅ PIPELINE AND DATA FLOW (Important)
Just like Azure Data Factory, Azure Synapse can have one or more pipelines. A 
pipeline is a logical grouping of activities that together perform a task. For example, a 
pipeline could contain a set of activities that ingest and clean log data, and then kick 
off a mapping data flow to analyze the log data. The pipeline allows you to manage 
the activities as a set instead of each one individually. You deploy and schedule the 
pipeline instead of the activities independently.

Choose the node size 
and the number of 

nodes
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Azure Synapse Analytics just 
like ADF has the same three 
groupings of activities: data 
movement activities, data 
transformation activities, and 
control activities. For revising 
the concepts from ADF, click 
here.

Now, a dataset is a named view of data that simply points or references the data you 
want to use in your activities as inputs and outputs. Before you create a dataset, you 
must create a linked service to link your data store to the Data Factory or Synapse 
Workspace. Linked services are like connection strings, which define the connection 
information needed for the service to connect to external resources. Think of it this 
way; the dataset represents the structure of the data within the linked data stores, and 
the linked service defines the connection to the data source. For example, to copy 
data from Blob storage to a SQL Database, you create two linked services: Azure 
Storage and Azure SQL Database. Then, create two datasets: an Azure Blob dataset 
(which refers to the Azure Storage linked service) and an Azure SQL Table dataset 
(which refers to the Azure SQL Database linked service).

You can choose an existing linked 
service of the type you selected for the 
dataset, or create a new one if one isn’t 
already defined.
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In Data Flow, datasets are used in source and sink transformations. The datasets 
define the basic data schemas. If your data has no schema, you can use schema drift 
for your source and sink.

Pipeline runs are typically instantiated by passing arguments to parameters that you 
define in the pipeline. You can execute a pipeline either manually or by using 
a trigger. We have the same triggers as in ADF: scheduled, tumbling window, and 
event-based.

Finally, The Integration Runtime (IR) provides the compute infrastructure for 
completing a pipeline. We have the same three types of IR: Azure, Self-hosted, and 
Azure-SSIS.

✅ So what are the differences between ADF and ASA ??

Category Feature Azure Data Factory
Azure Synapse
Analytics

Integration
Runtime

Using SSIS and SSIS
Integration Runtime

✓ ✓Public preview

Support for Cross-region
Integration Runtime (Data
Flows)

✓ ✗

Integration Runtime Sharing
✓Can be shared
across different data
factories

✗

Pipelines
Activities

SSIS Package Activity ✓ ✓Public preview

Support for Power Query
Activity (Wrangling Data
Flow)

✓ ✗

Support for global
parameters

✓ ✗

GIT Repository
Integration

GIT Integration ✓ ✓

Monitoring
Monitoring of Spark Jobs for
Data Flow

✗

✓Leverage the
Synapse Spark
pools

✅
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✅ Data Flows
Since it has already been covered in ADF, please refer there using this link.

✅ Loading Methods
Analytical systems are constantly balanced between loading and querying workloads. 
One of the main design goals in loading data is to manage or minimize the impact on 
analytical workloads while loading the data with the highest throughput possible.

Singleton updates: Singleton or smaller transaction batch loads should be grouped 
into larger batches to optimize the Synapse SQL Pools processing capabilities. One 
way to solve this issue is to develop one process that writes the outputs of an INSERT 
statement to a file and then another process to periodically load this file to take 
advantage of the parallelism.

Single Client loading method
SSIS

Azure Data Factory

Can add some parallel capabilities but 
are bottlenecked at the control node

Parallel Reader loading 
method

PolyBase

Reads from Azure blob and loads to 
Azure Synapse Analytics, SQL Server 
etc

Bypasses control node and loads 
directly into Compute nodes
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📌 NOTE: 
While dedicated SQL pools support many loading methods, including 
popular SQL Server options such as BCP and the SqlBulkCopy API, the 
fastest and most scalable way to load data is through PolyBase 
external tables and the COPY INTO <table> FROM command. 
 
If you are using PolyBase, you need to define external tables in your 
dedicated SQL pool before loading. PolyBase uses external tables to define 
and access the data in Azure Storage. An external table is similar to a 
database view. The external table contains the table schema and points to 
data that is stored outside the dedicated SQL pool. 
 
PolyBase can't load rows that have more than 1MB of data. When you put 
data into the text files in Azure Blob storage or Azure Data Lake Store, they 
must have fewer than 1,000,000 bytes of data. This byte limitation is true 
regardless of the table schema.

✅ 1) Load data to External Tables/ Serverless SQL 
Pool
The data lies in other data sources such as Hadoop, Azure Blob storage, or Azure 
Data lake Storage, whereas only the table structure is present in Azure Synapse. 
External tables are accessed using a feature called PolyBase

PolyBase is a tool that enables services such as SQL Server and Synapse Dedicated 
SQL pool to copy and query data directly from external locations. PolyBase is 
integrated into T-SQL, so every time we use a COPY INTO <table> FROM  command to 
read data from an external storage location, PolyBase kicks in. PolyBase is one of the 
fastest and most scalable ways to copy data.

In order to access external tables:

Step 1→ Authorization to use the Data Lake storage account

Step 2→ Define the format of the external file that we will work with e.g. CSV, parquet, 
etc
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Step 3→ Create and access the external table

Code Examples

-- Lab - Using External tables (Serverless SQL Pool) 
 
/* PolyBase 6 steps Process 
 
1. CREATE DATABASE ENCRYPTION KEY 
2. CREATE DATABASE-SCOPED CREDENTIAL 
3. CREATE AN EXTERNAL DATA SOURCE 
4. CREATE AN EXTERNAL FILE FORMAT  
5. CREATE AN EXTERNAL TABLE 
6. CREATE A TABLE AS */ 
 
-- First we need to create a database in the serverless pool 
CREATE DATABASE [appdb] 
 
/*  Ensure to switch the context to the new database (appdb) first */ 
 
/* 1. To access your Data Lake Storage account, you will need to create a  
Database Master Key to encrypt your credential secret. You then create a Database S
coped Credential to store your secret. The Master Key is required to encrypt the cr
edential secret (Shared Access Signature) in the next step. */ 
 
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'P@ssw0rd@123'; 
 
 
 
/*  2.(for blob storage key authentication): Create a database scoped credential 
    IDENTITY: Provide any string, it is not used for authentication to Azure storag
e. 
    SECRET: Provide your Azure storage account key (SAS). 
*/ 
-- Here we are using the Shared Access Signature to authorize the use of the Azure
 Data Lake Storage account 
 
CREATE DATABASE SCOPED CREDENTIAL SasToken 
WITH IDENTITY='SHARED ACCESS SIGNATURE' 
, SECRET = 'sv=2020-02-10&ss=b&srt=sco&sp=rl&se=2021-06-26T14:34:27Z&st=2021-06-26T
06:34:27Z&spr=https&sig=7nxID0JFYuddBCnNTsPoeyY%2BRZokkcgdSUSsrfmAkRc%3D'; 
--this is the SAS token that will be generated from the Data Lake based on options 
 
 
 
/*  3 (for blob): Create an external data source 
  TYPE: HADOOP - PolyBase uses Hadoop APIs to access data in Azure Data Lake Stora
ge. 
  LOCATION: Provide Data Lake Storage blob account name and URI 
  CREDENTIAL: Provide the credential created in the previous step. 
*/ 
 
CREATE EXTERNAL DATA SOURCE log_data 
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WITH (    LOCATION   = 'https://storageneil.dfs.core.windows.net/data', 
          CREDENTIAL = SasToken 
) 
 
 
 
/*  4: Create an external file format 
  FIELD_TERMINATOR: Marks the end of each field (column) in a delimited text file 
  STRING_DELIMITER: Specifies the field terminator for data of type string in the
 text-delimited file. 
  DATE_FORMAT: Specifies a custom format for all date and time data that might app
ear in a delimited text file. 
  Use_Type_Default: Store missing values as default for datatype. 
*/ 
 
 
CREATE EXTERNAL FILE FORMAT TextFileFormat WITH (   
      FORMAT_TYPE = DELIMITEDTEXT,  --for CSV files 
     FORMAT_OPTIONS (   
        FIELD_TERMINATOR = ',', 
        FIRST_ROW = 2)) 
 
 
 
/*  5: Create an External Table 
  LOCATION: Folder under the Data Lake Storage root folder. 
  DATA_SOURCE: Specifies which Data Source Object to use. 
  FILE_FORMAT: Specifies which File Format Object to use 
  REJECT_TYPE: Specifies how you want to deal with rejected rows. Either Value or
 percentage of the total 
  REJECT_VALUE: Sets the Reject value based on the reject type. 
*/ 
 
/* IMP NOTE 
External Tables are strongly typed.  
This means that each row of the data being ingested must satisfy the table schema d
efinition. If a row does not match the schema definition, the row is rejected from
 the load. 
*/ 
 
CREATE EXTERNAL TABLE [logdata] 
( 
  [Id] [int] NULL, 
 [Correlationid] [varchar](200) NULL, 
 [Operationname] [varchar](200) NULL, 
 [Status] [varchar](100) NULL, 
 [Eventcategory] [varchar](100) NULL, 
 [Level] [varchar](100) NULL, 
 [Time] [datetime] NULL, 
 [Subscription] [varchar](200) NULL, 
 [Eventinitiatedby] [varchar](1000) NULL, 
 [Resourcetype] [varchar](1000) NULL, 
 [Resourcegroup] [varchar](1000) NULL) 
WITH ( 
  LOCATION = '/Log.csv', 
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    DATA_SOURCE = log_data, --Data source name defined above with SAS token  
    FILE_FORMAT = TextFileFormat 
) 
 
 
 
/* 6 CREATE TABLE AS  - CTAS 
 CTAS creates a new table and populates it with the results of a select statement.  
 CTAS defines the new table to have the same columns and data types as the results 
of the select statement.  
 If you select all the columns from an external table, the new table is a replica
 of the columns and data types in the external table. 
*/ 
 
CREATE TABLE [EventHistory]        
WITH (DISTRIBUTION = HASH([OperationName]  ) )  
AS  
SELECT * FROM [logdata]; 
 
------------------------------------------------------------------ 
 
SELECT [Operation name] , COUNT([Operation name]) as [Operation Count] 
FROM [logdata] 
GROUP BY [Operation name] 
ORDER BY [Operation Count] 
 
/* Common errors 
 
1. External table 'logdata' is not accessible because the location does not exist o
r it is used by another process. Here your Shared Access Signature is an issue. 
 
2. Msg 16544, Level 16, State 3, Line 34 
The maximum reject threshold is reached. This happens when you try to select the ro
ws of data from the table. This can happen if the rows are not matching the schema
 defined for the table 
*/ 
 
/*  By default, tables are defined as clustered columnstore index.  
After a load completes, some of the data rows might not be compressed into the colu
mnstore. To optimize query performance and columnstore compression after a load, re
build the table to force the columnstore index to compress all the rows. 
*/ 
ALTER INDEX ALL ON [EventHistory_Lake] REBUILD; 
 
-- verify the data was loaded into the 60 distributions 
-- Find data skew for a distributed table 
DBCC PDW_SHOWSPACEUSED('EventHistory');

CTAS is a more customizable version of the SELECT...INTO statement. 
SELECT...INTO doesn't allow you to change neither the distribution method 
nor the index type as part of the operation. You create the new table by 
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using the default distribution type of ROUND_ROBIN, and the default table 
structure of CLUSTERED COLUMNSTORE INDEX.

-- Lab - (Dedicated SQL Pool) - External Tables - Parquet 
 
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'P@ssw0rd@123'; 
 
-- Here we are using the Storage account key for authorization 
 
CREATE DATABASE SCOPED CREDENTIAL AzureStorageCredential 
WITH 
  IDENTITY = 'appdatalake7000', 
  SECRET = 'VqJnhlUibasTfhSuAxkgIgY97GjRzHL9VNOPkjD8y+KYzl1LSDCflF6LXlrezAYKL3Mf1bu
LdZoJXa/38BXLYA=='; 
 
-- In the SQL pool, we can use Hadoop drivers to mention the source 
 
CREATE EXTERNAL DATA SOURCE log_data 
WITH (    LOCATION   = 'abfss://data@storageneil.dfs.core.windows.net', 
          CREDENTIAL = AzureStorageCredential, 
          TYPE = HADOOP 
) 
 
-- Here we are mentioning the file format as Parquet 
 
CREATE EXTERNAL FILE FORMAT parquetfile   
WITH (   
    FORMAT_TYPE = PARQUET,   
    DATA_COMPRESSION = 'org.apache.hadoop.io.compress.SnappyCodec'   
); 
 
-- Notice that the column names don't contain spaces 
-- When Azure Data Factory was used to generate these files, the column names could 
not have spaces 
 
CREATE EXTERNAL TABLE [logdata] 
( 
  [Id] [int] NULL, 
 [Correlationid] [varchar](200) NULL, 
 [Operationname] [varchar](200) NULL, 
 [Status] [varchar](100) NULL, 
 [Eventcategory] [varchar](100) NULL, 
 [Level] [varchar](100) NULL, 
 [Time] [datetime] NULL, 
 [Subscription] [varchar](200) NULL, 
 [Eventinitiatedby] [varchar](1000) NULL, 
 [Resourcetype] [varchar](1000) NULL, 
 [Resourcegroup] [varchar](1000) NULL 
) 
 
WITH ( 
  LOCATION = '/parquet/*.parquet',--select all the parquet files from the folder 
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    DATA_SOURCE = log_data,   
    FILE_FORMAT = parquetfile 
) 
 
/* 
A common error can come when trying to select the data, here you can get various er
rors such as MalformedInput 
 
You need to ensure the column names map correctly and the data types are correct as 
per the parquet file definition (Data types are embedded) 
*/ 
 
SELECT * FROM logdata 
 
SELECT [Operation name] , COUNT([Operation name]) as [Operation Count] 
FROM logdata 
GROUP BY [Operation name] 
ORDER BY [Operation Count]

✅ 2) Loading Data into Dedicated SQL Pool

1) Using the Copy statement
→ Using T-SQL, we can transfer data into a table in a SQL Pool

A mistake that many people make when first exploring dedicated SQL Pools are to 
use the service administrator account as the one used for loading data. Instead, it’s 
better to create specific accounts assigned to different resource classes dependent on 
the anticipated task. This will optimize load performance and maintain concurrency as 
required by managing the available resource slots available within the dedicated SQL 
Pool.

-- Lab - Loading data into a table - COPY Command - CSV 
 
-- Never use the admin account for load operations (keep it only for monitoring and admi
n purposes) 
-- Create a seperate user for load operations 
 
 
-- This has to be run in the master database as we are adding a login and user 
CREATE LOGIN user_load WITH PASSWORD = 'Azure@123'; 
 
--Here, we are adding a user associated with the login 
CREATE USER user_load FOR LOGIN user_load; 
GRANT ADMINISTER DATABASE BULK OPERATIONS TO user_load; 
GRANT CREATE TABLE TO user_load; 
GRANT ALTER ON SCHEMA::dbo TO user_load; 
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/* We can create multiple workload groups in order to provision compute resources such t
hat two different tasks such as a user loading data doesn't use the full resource capaci
ty when a user is present to perform some analysis job*/ 
 
CREATE WORKLOAD GROUP DataLoads --Workload Isolation 
WITH (  
    MIN_PERCENTAGE_RESOURCE = 80 
    ,CAP_PERCENTAGE_RESOURCE = 100 
    ,REQUEST_MIN_RESOURCE_GRANT_PERCENT = 4 -- factor of 80 (guaranteed more than 20 con
currencies) 
    ); 
--[Max Concurrency] = [CAP_PERCENTAGE_RESOURCE] / [REQUEST_MIN_RESOURCE_GRANT_PERCENT] 
 
CREATE WORKLOAD CLASSIFIER [ELTLogin] --Workload Classification 
WITH ( 
     WORKLOAD_GROUP = 'DataLoads' 
    ,MEMBERNAME = 'user_load' 
  ,IMPORTANCE = High  -- Workload Importance 
); 
 
-- Drop the external table if it exists 
DROP EXTERNAL TABLE logdata 
 
-- Create a normal table 
-- Login as the new user and create the table 
-- Here I have added more constraints when it comes to the width of the data type 
 
CREATE TABLE [logdata] 
( 
  [Id] [int], 
 [Correlationid] [varchar](200) , 
 [Operationname] [varchar](200) , 
 [Status] [varchar](100) , 
 [Eventcategory] [varchar](100) , 
 [Level] [varchar](100) , 
 [Time] [datetime] , 
 [Subscription] [varchar](200) , 
 [Eventinitiatedby] [varchar](1000) , 
 [Resourcetype] [varchar](1000) , 
 [Resourcegroup] [varchar](1000) 
)

2) Azure Synapse Pipeline
Define pipelines to carry out copying activity

1. Go to the Synapse Studio (web.azuresynapse.net) and click on data

2. Click on the + icon to connect to an external data source

3. Multiple options like Blob storage, Cosmos DB, Data Lake Gen2 etc are 
provided. Select the appropriate one, here is Gen2
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4. It will open a new linked service page where all the details have to be filled in 
and then click on create

5. In order to fetch the data from the external table, we need to provide some 
additional access to services which was not required when viewing the data as 
admin in the Gen2 storage

6. Go to Access Control inside the Gen2 space, and add a role assignment with 
Blob Data Contributor

7. Coming back to Synapse Studio, we will be able to see both dedicated SQL 
pool data as well as external data

8. Now we can view all data and run SQL queries for any activity.

9. Since we want to load data, we can right-click on any file where we want to 
append/ copy the data and click on New SQL script→Bulk Load

10. Fill in the required configuration settings and continuing forward, we will have a 
SQL query auto-generated that can be used for copying the data

3) Using Polybase to define external tables
Here data from an external table can be copied into internal tables

PolyBase requires the following elements:

1. An external data source that points to the  abfss  path in ADLS Gen2 where the 
Parquet files are located

2. An external file format for Parquet files

3. An external table that defines the schema for the files, as well as the location, 
data source, and file format

-- Lab - Loading data using PolyBase 
 
CREATE LOGIN user_load WITH PASSWORD = 'Azure@123'; 
 
CREATE USER user_load FOR LOGIN user_load; 
GRANT ADMINISTER DATABASE BULK OPERATIONS TO user_load; 
GRANT CREATE TABLE TO user_load; 
GRANT ALTER ON SCHEMA::dbo TO user_load; 
 
CREATE WORKLOAD GROUP DataLoads 
WITH (  
    MIN_PERCENTAGE_RESOURCE = 100 
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    ,CAP_PERCENTAGE_RESOURCE = 100 
    ,REQUEST_MIN_RESOURCE_GRANT_PERCENT = 100 
    ); 
 
CREATE WORKLOAD CLASSIFIER [ELTLogin] 
WITH ( 
    WORKLOAD_GROUP = 'DataLoads' 
    ,MEMBERNAME = 'user_load' 
); 
 
-- Here we are following the same process of creating an external table 
 
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'P@ssw0rd@123' ; 
 
-- If you want to see existing database scoped credentials 
SELECT * FROM sys.database_scoped_credentials 
 
CREATE DATABASE SCOPED CREDENTIAL AzureStorageCredential 
WITH 
  IDENTITY = 'appdatalake7000', 
  SECRET = 'VqJnhlUibasTfhSuAxkgIgY97GjRzHL9VNOPkjD8y+KYzl1LSDCflF6LXlrezAYKL3Mf1buL
dZoJXa/38BXLYA=='; 
 
-- If you want to see the external data sources 
SELECT * FROM sys.external_data_sources  
 
 
 
--Step 1 
CREATE EXTERNAL DATA SOURCE log_data 
WITH (    LOCATION   = 'abfss://data@appdatalake7000.dfs.core.windows.net', 
          CREDENTIAL = AzureStorageCredential, 
          TYPE = HADOOP 
) 
 
-- If you want to see the external file formats 
SELECT * FROM sys.external_file_formats 
 
 
 
--Step 2 
CREATE EXTERNAL FILE FORMAT parquetfile   
WITH (   
    FORMAT_TYPE = PARQUET,   
    DATA_COMPRESSION = 'org.apache.hadoop.io.compress.SnappyCodec'   
); 
 
 
-- Create the external table as the admin user 
--Step 3 
CREATE EXTERNAL TABLE [logdata_external] 
( 
  [Id] [int] NULL, 
 [Correlationid] [varchar](200) NULL, 
 [Operationname] [varchar](200) NULL, 
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 [Status] [varchar](100) NULL, 
 [Eventcategory] [varchar](100) NULL, 
 [Level] [varchar](100) NULL, 
 [Time] [datetime] NULL, 
 [Subscription] [varchar](200) NULL, 
 [Eventinitiatedby] [varchar](1000) NULL, 
 [Resourcetype] [varchar](1000) NULL, 
 [Resourcegroup] [varchar](1000) NULL 
) 
WITH ( 
   LOCATION = '/parquet/', 
    DATA_SOURCE = log_data,   
    FILE_FORMAT = parquetfile 
) 
 
 
-- Now create a normal table by selecting all of the data from the external table 
 
CREATE TABLE [logdata] 
WITH 
( 
 DISTRIBUTION = ROUND_ROBIN, 
 CLUSTERED INDEX (id)    
) 
AS 
SELECT  * 
FROM  [logdata_external];

✅ Azure Stream Analytics
Cloud-based stream processing engine (PaaS) solution that can 
be used to define streaming jobs that ingest data from a 
streaming source, apply a perpetual query and write the results 
to output. 
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Stream Analytics can route job output to many storage systems such as Azure Blob 
storage, Azure SQL Database, Azure Data Lake Store, and Azure Cosmos DB. You can 
also run batch analytics on stream outputs with Azure Synapse Analytics or HDInsight, or 
you can send the output to another service, like Event Hubs for consumption or Power BI 
for real-time visualization.

The process of consuming 
data streams, analyzing them, 
and deriving actionable 
insights is called stream 
processing. You can 
transform streaming data using 
the SQL-like Stream 
Analytics Query Language to 
perform temporal and other 
aggregations against a data 
stream to gain insights.

✅ Create a Stream Analytics job (link)
A Stream Analytics job is the fundamental unit in Stream Analytics that allows you to 
define and run your stream processing logic. A job consists of 3 main components:

1) Input
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A job can have one or more inputs to continuously read data from. These streaming input 
data sources could be Azure Event Hubs, Azure IoT Hub or Azure Storage. Stream 
Analytics also supports reading static or slow-changing input data (called reference data) 
which is often used to enrich streaming data and perform correlation and lookups.

Dynamic schema handling is a powerful feature, and key to stream processing. Data 
streams often contain data from multiple sources, with multiple event types, each with 
a unique schema. To route, filter, and process events on such streams, ASA has to 
ingest them all whatever their schema.

But the capabilities offered by dynamic schema handling come with a potential 
downside. Unexpected events can flow through the main query logic and break it. As 
an example, we can use ROUND on a field of type  NVARCHAR(MAX) . ASA will implicitly 
cast it to float to match the signature of  ROUND . Here we expect, or hope, this field will 
always contain numeric values. But when we do receive an event with the field set 
to  "NaN" , or if the field is entirely missing, then the job may fail.

2) Output
A job can have one or more outputs to continuously write data to. 

When you design your Stream Analytics query, refer to the name of the output by using 
the INTO clause. You can use a single output per job, or multiple outputs per streaming 
job (if you need them) by adding multiple INTO clauses to the query.
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Stream Analytics supports partitions for all outputs except for Power BI. Additionally, 
for more advanced tuning of the partitions, the number of output writers can be 
controlled using an  INTO <partition count>  clause in your query, which can be helpful in 
achieving a desired job topology.

WITH Step1 AS ( 
    SELECT *  
    FROM input  
    PARTITION BY DeviceId 
    INTO 10 
) 
 
SELECT * INTO [output] FROM Step1 PARTITION BY DeviceId

3) Query
The rich SQL like language support allows you to tackle scenarios such as parsing 
complex JSON, filtering values, computing aggregates, performing joins, and even more 
advanced use cases such as geospatial analytics and anomaly detection. We can also 
extend this SQL language with JavaScript or C# user-defined functions (UDF) and 
JavaScript user-defined-aggregates (UDA).

✅ Create a Stream Analytics cluster
A Stream Analytics cluster is a single-tenant deployment that can be used for complex 
and demanding streaming use cases. You can run multiple Stream Analytics jobs on a 
Stream Analytics cluster.

By default, Stream Analytics jobs run in the Standard multi-tenant environment which 
forms the Standard SKU. Stream Analytics also provides a Dedicated SKU where you 
can provision an entire Stream Analytics cluster that belongs to you.

Streaming Unit Capacity are available from 36 SUs through 396 SUs (36, 72, 108…). 
We need to determine the size of the cluster by estimating how many Stream Analytics 
job we plan to run and the total SUs the job will require. We can scale up or down as 
required. (36 SUs mean approximately 36 MB/second throughput with millisecond 
latency).

✅ Understand and Adjust Streaming Units (SUs)
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Streaming Units (SUs) represent the computing resources that 
are allocated to execute a Stream Analytics job. The higher the 
number of SUs, the more CPU and memory resources are 
allocated for your job.

To achieve low latency stream processing, Azure Stream Analytics jobs perform all 
processing in-memory. When running out of memory, the streaming job fails. The SU % 
utilization metric describes the memory consumption of your workload.

One of the unique capability of Azure Stream Analytics job is to perform stateful 
processing, such as windowed aggregates, temporal joins, and temporal analytic 
functions. Each of these operators keeps state information.

The temporal window concept appears in several Stream Analytics query elements. The 
following factors influence the memory used (part of streaming units metric)

1. Windowed aggregates: GROUP BY  of Tumbling, Hopping, and Sliding windows

The memory consumed (state size) for a windowed aggregate isn't always directly 
proportional to the window size. Instead, the memory consumed is proportional to the 
cardinality of the data, or the number of groups in each time window. We can use 
GROUP BY clause to reduce cardinality.

SELECT count(*)  
FROM input PARTITION BY PartitionId 
GROUP BY PartitionId, clusterid, TumblingWindow (minutes, 5)

2. Temporal joins: JOIN with DATEDIFF  function

The memory consumed (state size) of a temporal join is proportional to the number of 
events in the temporal wiggle room of the join, which is event input rate multiplied by 
the wiggle room size. For reading more about this, click here

3. Temporal analytic functions: ISFIRST , TOPONE , LAST , and LAG with LIMIT 
DURATION

The memory consumed (state size) of a temporal analytic function is proportional to 
the event rate multiply by the duration. The memory consumed by analytic functions 
isn't proportional to the window size, but rather partition count in each time window.

✅
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✅ Windowing Functions

Windowing functions are operations performed against the data 
contained within a temporal or time-boxed window. A window 
contains event data along a timeline. Using windowing provides 
a way to aggregate events over various time intervals 
depending on specific window definitions.

Stream Analytics has native support for windowing functions. There are five kinds of 
temporal windows to choose from: Tumbling, Hopping, Sliding, Session, and 
Snapshot windows. You use the window functions in the GROUP BY clause of the query 
syntax in your Stream Analytics jobs. You can also aggregate events over multiple 
windows using the Windows() function.

1) Tumbling window
Tumbling window functions are used to 
segment a data stream into distinct 
time segments and perform a function 
against them, such as in the example 
below. The key differentiators of a 
Tumbling window are that they repeat, do 
not overlap, and an event cannot belong 
to more than one tumbling window.
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By default, windows are inclusive of the end of the window and exclusive of the 
beginning. However, you can use the  Offset  parameter to change this behavior.

Complex Code Example

--Example of a query using tumbling windows 
 
/*The query averages the engine temperature and speed over a two-second duration by add
ing TumblingWindow(Duration(second, 2)) to the query's GROUP BY clause. Then it selects 
all telemetry data, including the average values from the previous step, and specifies
 the anomalies as new fields 
 
The query outputs all fields from the anomalies step into the powerBIAlerts output wher
e aggressivedriving = 1 or enginetempanomaly = 1 or oilanomaly = 1 for reporting. The q
uery also aggregates the average engine temperature and speed of all vehicles over the
 past two minutes, using TumblingWindow(Duration(minute, 2)), and outputs these fields
 to the synapse output.*/ 
 
WITH Averages AS ( 
    SELECT 
        AVG(engineTemperature) averageEngineTemperature, 
        AVG(speed) averageSpeed 
    FROM 
        eventhub TIMESTAMP BY [timestamp] 
    GROUP BY 
        TumblingWindow(Duration(second, 2)) 
), 
Anomalies AS ( 
    select 
        t.vin, 
        t.[timestamp], 
        t.engineTemperature, 
        a.averageEngineTemperature, 
        a.averageSpeed, 
        t.engineoil, 
        t.accelerator_pedal_position, 
        t.brake_pedal_status, 
        t.transmission_gear_position, 
        (CASE WHEN a.averageEngineTemperature >= 405 OR a.averageEngineTemperature <= 1
5 THEN 1 ELSE 0 END) AS enginetempanomaly, 
        (CASE WHEN t.engineoil <= 1 THEN 1 ELSE 0 END) AS oilanomaly, 
        (CASE WHEN (t.transmission_gear_position = 'first' OR 
            t.transmission_gear_position = 'second' OR 
            t.transmission_gear_position = 'third') AND 
            t.brake_pedal_status = 1 AND 
            t.accelerator_pedal_position >= 90 AND 
            a.averageSpeed >= 55 THEN 1 ELSE 0 END) AS aggressivedriving 
    FROM eventhub t TIMESTAMP BY [timestamp] 
    INNER JOIN Averages a ON DATEDIFF(second, t, a) BETWEEN 0 And 2 
), 
VehicleAverages AS ( 
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    SELECT 
        AVG(engineTemperature) averageEngineTemperature, 
        AVG(speed) averageSpeed, 
        System.TimeStamp() AS snapshot 
    FROM 
        eventhub TIMESTAMP BY [timestamp] 
    GROUP BY 
        TumblingWindow(Duration(minute, 2)) 
) 
 
-- INSERT INTO POWER BI 
SELECT 
    * 
INTO 
    powerBIAlerts 
FROM 
    Anomalies 
WHERE aggressivedriving = 1 OR enginetempanomaly = 1 OR oilanomaly = 1 
 
-- INSERT INTO SYNAPSE ANALYTICS 
SELECT 
    * 
INTO 
    synapse 
FROM 
    VehicleAverages

2) Hopping window
Hopping window functions hop forward in 
time by a fixed period. It may be easy to 
think of them as Tumbling windows that 
can overlap. Events can belong to more 
than one Hopping window result set.

The  windowsize  is 10 seconds, and 
the  hopsize  is 5 seconds

3) Sliding window
Sliding windows, unlike Tumbling or 
Hopping windows, output events only 
for points in time when the content of 
the window actually changes. In other 
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words, when an event enters or exits the 
window. So, every window has at least 
one event. 

4) Session window
Session window cluster 
together events that arrive at 
similar times, filtering out 
periods of time where there is 
no data.

The following query measures user session length by creating a  SessionWindow  over 
clickstream data with a  timeoutsize  of 5 seconds and a  maximumdurationsize  of 10 seconds

A session window begins when the first event occurs. If another event occurs within the 
specified timeout from the last ingested event, then the window extends to include the 
new event. Otherwise, if no events occur within the timeout, then the window is closed at 
the timeout.

If events keep occurring within the specified timeout, the session window will keep 
extending until the maximum duration is reached. The maximum duration checking 
intervals are set to be the same size as the specified max duration. For example, if the 
max duration is 10, then the checks on if the window exceeds the maximum duration will 
happen at t = 0, 10, 20, 30, etc.

When a partition  key is provided, the events are grouped together by the key and the 
session window is applied to each group independently. This partitioning is useful for 
cases where you need different session windows for different users or devices.

Code Example with partition by

-- Output the count of events that occur within 2 minutes of each other with a maximum
 duration of 60 minutes. 
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SELECT 
    Username, 
    MIN(ClickTime) AS WindowStart, 
    System.Timestamp() AS WindowEnd, 
    DATEDIFF(s, MIN(ClickTime), System.Timestamp()) AS DurationInSeconds 
FROM Clickstream TIMESTAMP BY ClickTime 
GROUP BY Username, SessionWindow(minute, 2, 60) OVER (PARTITION BY Username)

5) Snapshot window
Snapshot windows group events that have the same timestamp. Unlike other windowing 
types, which require a specific window function, you can apply a snapshot window by 
adding System.Timestamp()  to the GROUP BY clause.

✅ Monitoring Performance + Metrics
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Some of the important metrics:

SU% Utilization
Percentage of memory that your job utilizes. If this metric is consistently over 80 percent, 
the watermark delay is rising, and the number of backlogged events is rising, consider 
increasing streaming units (SUs) and/or scale with query parallelization.

Runtime Error
The total number of errors related to query processing. Examine the activity or resource 
logs and make appropriate changes to the inputs, query, or outputs.

Watermark delay (Important)
This metric is aimed towards providing a reliable signal of job health which is agnostic to 
input and output patterns of the job. 

Modern stream processing systems differentiate between event time also referred to as 
application time, and arrival time. EVENT TIME  is the time generated by the producer of the 
event and typically contained in the event data as one of the columns. ARRIVAL TIME  is the 
time when the event was received by the event ingestion layer, for example, when the 
event reaches Event Hubs.

Most applications prefer to use event time as it excludes possible delays associated with 
transferring and processing of events. In-Stream Analytics, you can use the TIMESTAMP BY  
clause to specify what value should be used as event time.

For example, when Stream Analytics reports a certain watermark value at the output, it 
guarantees that all events prior to this timestamp were already computed. Watermark can 
be used as an indicator of liveliness for the data produced by the job. If the delay between 
the current time and the watermark is small, it means the job is keeping up with the 
incoming data and produces results defined by the query on time.

Below we show an illustration of this concept using a simple example of a passthrough 
query:
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This value represents the maximum watermark delay across all partitions of all 
outputs in the job.

Input deserialization error
The number of input events that couldn't be deserialized. Examine the activity or resource 
logs and make appropriate changes to the input

Backlogged Input events
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The number of input events that are backlogged. A nonzero value for this metric implies 
that your job can't keep up with the number of incoming events. If this value is slowly 
increasing or is consistently nonzero, you should scale out your job.

✅ Azure Event Hub
Azure Event Hubs is a big data streaming platform and event 
ingestion service. It can receive and process millions of events 
per second. Data sent to an event hub can be transformed and 
stored by using any real-time analytics provider or 
batching/storage adapters. It can also be configured to scale 
dynamically, when required, to handle increased throughput.

Event Hubs is one of three types of message brokers available on Azure. Message 
brokers act as intermediaries between event producers, such as mobile phone apps, and 
event consumers, like dashboards or data processing pipelines.

Live Data Processing should be able to ingest high volumes of data, process these data using sufficient 
processing power, and generate output data in real-time that will get stored in storage with high 

bandwidth
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An entity that sends data to your event hub is called a publisher or producer

An entity that reads data from an event hub is called a consumer, or a subscriber. 
Each consumer group can independently seek and read data, from each partition, at 
their own pace.

An event is a small packet of information (a datagram) that contains a notification. 
Events can be published individually or in batches, but a single publication can’t 
exceed 1 MB.

Event publishers are any app or device that can send out events using either HTTPS, 
Advanced Message Queuing Protocol (AMQP) 1.0, or Apache Kafka.

For publishers that send data frequently, AMQP has better performance. (More 
reading)

For more intermittent publishing, HTTPS is the better option.

Temporal Decoupling
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The temporal decoupling provided by message brokers means that the event producer 
and event consumers don’t need to run concurrently.

Load Balancing 
Event Hubs is able to handle sudden influxes of traffic than a directly coupled consumer 
that needs to spend time processing each message. As consumers pull data at their own 
rate, they avoid being overloaded at any given moment and can process any backlog 
during moments of lower traffic

Partition
A partition is an ordered sequence of events that are held in an Event Hub Partitions can 
be used to divide or prioritize work and ensure that certain types of data are physically 
stored together for ease of processing and backup.

Auto-Inflate automatically scales the number of Throughput Units assigned to your 
Standard Tier Event Hubs Namespace when your traffic exceeds the capacity of the 
Throughput Units assigned to it. You can specify a limit to which the Namespace will 
automatically scale.

Checkpointing
It is a process by which readers mark or commit their position within a partition event 
sequence. Checkpointing is the responsibility of the consumer and occurs on a per-
partition basis within a consumer group.

📌 Pull Model

Event Hubs guarantees message caching, but the responsibility for 
reading that cache falls to the consumer application. This makes it the 
responsibility of the consumer(s) to ensure data are processed before they 
expire. This provides flexibility but also can mean that messages are lost in 
exceptional circumstances.

✅ Create and configure an event hub
There are two main steps to creating a new event hub. 
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1. The first step is to define the Event Hubs namespace. An Event Hubs namespace is 
a container for managing one or more event hubs.

2. The second step is to create an event hub in that namespace. The following 
parameters are required to create an event hub:

Event hub name - Event hub name that is unique within your subscription

Partition count - The number of partitions required in an event hub (between 2 
and 32 for the standard tier). The partition count should be directly related to the 
expected number of concurrent consumers and can't be changed after the hub 
has been created. If not defined, the value defaults to 4.

Message retention - The number of days (1 to 7 for the standard tier) that 
messages will remain available if the data stream needs to be replayed for any 
reason. If not defined, this value defaults to 7. For Event 
Hubs Premium and Dedicated, the maximum retention period is 90 days.
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✅ Monitor Performance
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Useful metrics available in Event Hubs include:

Throttled Requests: The number of throttled requests because the throughput 
exceeded unit usage.

ActiveConnections: The number of active connections on a namespace or Event 
Hub.

Incoming/Outgoing Bytes: The number of bytes sent to/received from the Event 
Hubs service over a specified period.

The Overview pane for your Event Hub service shows message counts, which represent the data 
(events) received and sent by the event hub.
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✅ Azure Monitor
Centralized management and consolidated monitoring of all 
azure resources. Azure Monitor groups together other services 
like Metrics, Alerts, Activity Log, etc
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Metrics
Metrics are numerical values that 
describe some aspect of a system at 
a particular point in time.

Logs
Logs are events that occurred within 
the system. They can contain 
different kinds of data and may be 
structured or free-form text with a 
timestamp.

Traces
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Traces are a series of related events that follow a user request. They can be used to 
determine the behavior of application code and the performance of different transactions.

While logs will often be created by individual components of a distributed system, a trace 
measures the operation and performance of your application across the entire set of 
components.

Changes
Changes are a series of events that occur in your Azure application and resources.

Azure Dashboards allows combining different kinds of data


