
💻 DP-203 Notes by Neil Bagchi 1

💻 DP-203 Notes by Neil Bagchi

Topics to Learn (Microsoft Learn)
1. Basics (refresher)

2. Azure Data Lake Storage

3. Data Factory

4. Azure Databricks

5. Azure Synapse Analytics

6. Azure Stream Analytics

7. Event Hubs

8. Azure Monitor

Notes link

Notes link

Notes link

Notes link

Notes link

Notes link

Notes link

Notes link

Sites/ Courses followed:
1. Microsoft Learn Path- Link

2. Udemy Course by Eshant Garg (link) and Alan Rodrigues (link)

3. Practice Labs from Microsoft- Link

💻 DP-203 Notes by Neil Bagchi 2

✅ Basics
1. Data Types

2. Avro vs ORC vs Parquet

3. Availability Zones

4. OLTP vs OLAP

5. Data Lake vs Data Warehouse

6. Big Data Architecture

7. Partitioning Strategies

✅ Data Types
Data is a collection of facts such as numbers, descriptions, and observations used to
record information. We can classify data as structured, semi-structured, or unstructured.

Structured
Data that adheres to a
fixed schema, i.e. all of the
data has the same fields or
properties. This means the
data structure is designed
before any information is
loaded into the system. Eg.
Tabular data, CSV,
spreadsheets

Semi-Structured
Data that has some
structure but allows for
some variation i.e
doesn’t fit neatly into
tables such as NoSQL,
JSON, XML, YAML etc

Unstructured
Data that doesn’t have a
specific structure such as
documents, images, audio,
video data, log data, and
binary files.

✅ Optimized file formats for Storage
While human-readable formats for structured and semi-structured data can be useful,
they're typically not optimized for storage space or processing. Some common optimized
file formats include Avro, ORC, and Parquet:

Avro
Row-based

• Writing new records is easy (efficient)

💻 DP-203 Notes by Neil Bagchi 3

• Reading parts of the records will involve
reading the entire record thus being more
memory intensive. (not efficient)

Avro format works well with a message bus such as Event Hubs or Kafka that writes
multiple events/messages in succession. Also good for workloads having a lot of ETL
jobs, thus best for landing/raw zone.

ORC (Optimized
 Row
Columnar
format)

• Writes are not efficient
• Reads are efficient
• Highly efficient in terms of storage.

It was developed for optimizing read and write operations in Apache Hive.

Parquet
Column based

• Writes are not efficient
• Reads are efficient
• Highly efficient in terms of storage but not as
good as ORC

Apache Parquet is an open-source file
format that is optimized for read-heavy
analytics pipelines. The columnar storage
structure of Parquet lets you skip over
non-relevant data making your queries
much more efficient. This ability to skip
also results in sending relevant data from
storage to the analytics engine resulting in
lower costs along with better performance.
In addition, since similar data types (for a
column) are stored together, Parquet
lends itself friendly to efficient data
compression and encoding schemes
lowering your data storage costs as well.

💻 DP-203 Notes by Neil Bagchi 4

Services such as Azure Synapse Analytics, Azure Databricks, and Azure Data
Factory have native functionality that takes advantage of Parquet file formats.

📌 TIP: If you still need to store the data in any of the semi-structured formats
such as CSV, JSON, XML, and so on, consider compressing them using
Snappy compression.

✅ Availability Zones

Availability zones are
physically separate data
centers within an Azure region.
Each availability zone is made
up of one or more data centers
equipped with independent
power, cooling, and
networking. An availability
zone is set up to be an
isolation boundary. If one zone
goes down, the other continues
working.

There's a minimum of three availability zones
within a single region if applicable. However, not

all regions have availability zones.

💻 DP-203 Notes by Neil Bagchi 5

✅ OLTP vs OLAP
Transactional Processing (OLTP) Analytical Processing (OLAP)

Analyses individual entries Analyses large batches of data

Access to recent data Access to older data going back years

Updates data frequently Optimized for reading operations

Faster real-time access Long-running jobs

Usually a single data source Multiple data sources

MySQL, Azure SQL Database
Apache Hive, Teradata, Azure Synapse
Analytics

✅ How is a data lake different from a data warehouse?

RA-GRS and RA-GZRS provide data access across both the region pairs at the same time and thus are
more costly whereas, in GRS and GZRS, access to the other region pair only happens when one of the

regions fails

💻 DP-203 Notes by Neil Bagchi 6

✅ Big Data Architecture (link)

💻 DP-203 Notes by Neil Bagchi 7

✅ Batch processing
Because the data sets are so large, often a big data solution must process data files
using long-running batch jobs to filter, aggregate, and otherwise prepare the data for
analysis. Usually, these jobs involve reading source files, processing them, and writing
the output to new files.

✅ Stream processing
After capturing real-time messages, the solution must process them by filtering,
aggregating, and otherwise preparing the data for analysis. The processed stream data is
then written to an output sink.

💻 DP-203 Notes by Neil Bagchi 8

1) Lambda Architecture
One of the shortcomings of batch processing systems is the time it takes to process the
data. One drawback of this approach is that it introduces latency, a batch pipeline might
run for several hours - or sometimes even days - to generate the results.

The lambda architecture addresses this problem by using a combination of fast and
slow pipelines. All data coming into the system goes through these two paths:

A batch layer (cold/slow path) stores all of the incoming data in its raw form and
performs batch processing on the data. The result of this processing is stored as
a batch view.

A speed layer (hot/fast path) analyzes data in real time. This layer is designed for
low latency, at the expense of accuracy.

💻 DP-203 Notes by Neil Bagchi 9

Both these pipelines feed into a Serving layer that updates the incremental updates from
the fast path based on recent data into the baseline data from the slow path.

2) Kappa Architecture
A drawback to the lambda architecture is its complexity. Processing logic appears in two
different places — the cold and hot paths — using different frameworks. This leads to
duplicate computation logic and the complexity of managing the architecture for both
paths.

In Kappa though, all data flows through a single path, using a stream processing
system.

In Kappa architecture, the input component is a message queue such as an Apache
Kafka or Azure Event Hubs queue, and all the processing is usually done through Azure
Stream Analytics or Spark. Kappa architecture can be used for applications such as real-
time ML and applications where the baseline data doesn't change very often.

✅ Partitioning
In many large-scale solutions, data is divided into partitions that can be managed and
accessed separately. Partitioning can improve scalability, reduce contention, and optimize
performance. It can also provide a mechanism for dividing data by usage pattern.

There are three typical strategies for partitioning data:

1) Horizontal partitioning (often called sharding)
In this strategy, each partition is a separate data store, but all partitions have the same
schema. Each partition is known as a shard and holds a specific subset of the data, such

💻 DP-203 Notes by Neil Bagchi 10

as all the orders for a specific set of customers.

2) Vertical partitioning
In this strategy, each partition holds a subset of the fields for items in the data store. The
fields are divided according to their pattern of use. For example, frequently accessed
fields might be placed in one vertical partition and less frequently accessed fields in
another.

3) Functional partitioning
In this strategy, data is aggregated according to how it is used by each bounded context
in the system. For example, an e-commerce system might store invoice data in one
partition and product inventory data in another.

💻 DP-203 Notes by Neil Bagchi 11

✅ Azure Storage
The following four data services together are called Azure Storage

A storage account is a container that groups a
set of Azure Storage services together. Only
data services from Azure Storage can be
included in a storage account (Azure Blobs,
Azure Files, Azure Queues, and Azure Tables).

💻 DP-203 Notes by Neil Bagchi 12

Other Azure data services, such as Azure
SQL and Azure Cosmos DB, are managed as
independent Azure resources and cannot be
included in a storage account.

1) Azure Blob:

Blob (binary large object) Storage is
an object storage solution. It is the
cheapest option to store unstructured
data (no restriction on the type of
data) that won’t be queried.

Every blob lives inside a blob container. You can store an unlimited number of blobs in a
container and an unlimited number of containers in a storage account. Containers are
"flat"; they can only store blobs, not other containers. Blob Storage does not provide
any mechanism for searching or sorting blobs by metadata.

📌 Technically, containers are "flat" and don't support any kind of nesting or
hierarchy. But if you give your blobs hierarchical names that look like file paths
(such as finance/budgets/2017/q1.xls), the API's listing operation can filter
results to specific prefixes. This enables you to navigate the list as if it was a
hierarchical system of files and folders. This feature is often called virtual
directories.

Azure Blob Storage supports three different types of blob:

Block blobs: Page blobs: Append blobs:

💻 DP-203 Notes by Neil Bagchi 13

Set of blocks of different
sizes that can be uploaded
independently and in
parallel.

A page blob is
optimized to support
random read and write
operations.

Specialized block blobs
that support only
appending new data (no
updating or deleting
existing data), but they're
very efficient at it.

→ Hadoop HDFS vs DataLake (optional)
Hadoop consists of three core components –

Hadoop Distributed File System (HDFS) – It is the storage layer of Hadoop.

Map-Reduce – It is the data processing layer of Hadoop.

YARN – It is the resource management layer of Hadoop.

Other than the core components of Hadoop, we have a bunch of ecosystem
technologies. Some of the important ones are Apache Spark, SQL Hive, Hbase,
Sqoop, Pig, and Oozie. All these together are called the Hadoop Ecosystem

A data lake is an architecture within which Hadoop HDFS is just the storage
component of that architecture. In a sense, both of these are complementary to each
other. However, it is not necessary for a data lake to always use HDFS. Based on the
requirements of the task, we can swap it with other technologies such as Apache
Kafka for managing real-time data, NoSQL for transaction-oriented data, Hadoop for
economical storage, or more recent Apache KUDU for large-scale analytics
workloads.

Hadoop already has inbuilt advantages such as a
fault-tolerant file system, the ability to run on
commodity hardware, etc. Microsoft utilized these
advantages by creating Data Lake Gen 1 which is
basically Hadoop in the cloud.

However, with time, requirements evolved in terms
of processing as well as storage capabilities

Here enters Microsoft Blob Storage which could store massive amounts of
unstructured data. Blob storage is a general-purpose object storage that provides

💻 DP-203 Notes by Neil Bagchi 14

cheap storage. So Microsoft combined all the good features of Blob storage and
DataLake Gen1 to create Azure Data Lake Gen2

Differences:

Hadoop 2.0 ADLS Gen2

Clusters are tightly coupled with HDFS Storage is separate from clusters

On stopping the cluster, all data is lost
We can stop the cluster without losing any
data

Costly: Clusters have to keep on running
even if there is no processing and pay for
both storage and cluster

Cost efficient: Only pay for storage when
processing is not required

1.a) Data Lake Storage Gen2 (optimized for big data
analytics)

Enhanced Blob Storage for
enterprise big data analytics
(hierarchical namespace). It
provides low-cost, tiered
storage, with high availability/
disaster recovery.

• ABFS (Azure blob file system) is a dedicated driver for Hadoop running on Azure blob
storage. Think of the data as if it's stored in a Hadoop Distributed File System (HDFS)
which means that Azure Data Lake Storage organizes the stored data into a hierarchy of
directories and subdirectories, much like a file system, for easier navigation. As a result,
data processing requires fewer computational resources, reducing both the time and cost.

💻 DP-203 Notes by Neil Bagchi 15

• Azure Data Lake Storage Gen2 implements an access control model that supports both
Azure role-based access control (Azure RBAC) and POSIX-like access control lists
(ACLs). You can set permissions at a directory level or file level for the data stored within
the data lake. (more on this later)

Below is a common example we see for data that is structured by date:

➖ /DataSet/YYYY/MM/DD/datafile_YYYY_MM_DD

➖ {Region}/{SubjectMatter(s)}/{yyyy}/{mm}/{dd}/{hh}/

📌 TIP: Avoid putting date folders at the beginning as it makes applying ACLs to
every subfolder more tedious.

2) Azure Files:

Azure Files offers fully managed file
shares in the cloud that can be
accessed and managed like a file
server using the industry standard
Server Message Block (SMB) and
Network File System (NFS)
protocols.

File shares can be used for many common scenarios:

Shared data between on-premises applications and Azure VMs to allow migration of
apps to the cloud over a period of time.

Storing shared configuration files for VMs, tools, or utilities so that everyone is using
the same version. Log files such as diagnostics, metrics, and crash dumps.

3) Azure Queue:

A messaging store used to store a
large number of messages that can

💻 DP-203 Notes by Neil Bagchi 16

be accessed asynchronously
between the source and the
destination.

There are two types of queues: Storage queues and Service Bus.

Storage queues can be used for simple asynchronous message processing. They
can store up to 500 TB of data (per storage account) and each message can be up to
64 KB in size.

Service Bus provides advanced features plus the message sizes can be up to 1 MB
but the overall size is capped at 80 GB.

4) Azure Table:

A NoSQL store that hosts
unstructured data independent of
any schema. It makes use of tables
containing key-value data items.

It makes use of tables containing key-value data items but is not similar to a relational
database. Thus there is no concept of relationships, stored procedures, secondary
indexes, or foreign keys. Data is denormalized, with each row holding the entire data for
a logical entity. To help ensure fast access, Azure Table Storage splits a table into
partitions

✅ Data archiving solution
Hot access tier:

Higher storage
costs, but lower
access and
transaction costs.
Optimized for
storing data that is

Cool access tier:

Lower storage costs,
but higher access and
transaction costs.
Optimized for data that is
infrequently accessed
and stored for at least

Archive access tier (available
only at individual blob level):

Lowest storage costs, but
highest access, and transaction
costs.
Appropriate for data that is rarely
accessed and stored for at least

💻 DP-203 Notes by Neil Bagchi 17

accessed frequently
(for example,
images for your
website).

30 days (for example,
invoices for your
customers).

180 days, with flexible latency
requirements (for example, long-
term backups)

📌 To read data in archive storage, you must first change the tier of the blob to hot
or cool. This process is known as rehydration and can take hours to complete.

✅ Data life cycle management
We can define policies such as how long a particular data needs to be in the Hot Access,
when to move the data between the different access tiers, when to delete blobs, and so
on. Azure runs data life cycle policies only once a day, so it could take up to 24
hours for your policies to kick in.

✅ Optimizing data lake for scale and performance
Optimize for high throughput – target getting at least a few MBs (higher the better)
per transaction.

Optimize data access patterns – reduce unnecessary scanning of files, read only
the data you need to read

1) File sizes and number of files
Analytics engines (ingest or data processing pipelines) incur overhead for every file they
read (related to the listing, checking access, and other metadata operations) and too
many small files can negatively affect the performance of your overall job. Further, when
you have files that are too small (in the KBs range), the amount of throughput you achieve
with the I/O operations is also low, requiring more I/Os to get the data you want. In
general, it's a best practice to organize your data into larger-sized files (target at least
100 MB or more) for better performance.

In a lot of cases, if your raw data (from various sources) itself is not large, you have the
following options to ensure the data set your analytics engines operate on is still
optimized with large file sizes.

💻 DP-203 Notes by Neil Bagchi 18

Add a data processing layer in your analytics pipeline to coalesce data from multiple
small files into a large file. You can also use this opportunity to store data in a read-
optimized format such as Parquet for downstream processing.

In the case of processing real-time data, you can use a real-time streaming engine
(such as Azure Stream Analytics or Spark Streaming) in conjunction with a message
broker (such as Event Hub or Apache Kafka) to store your data as larger files.

2) Partitioning Strategy
An effective partitioning scheme for your data can improve the performance of your
analytics pipeline and also reduce the overall transaction costs incurred with your query.
In simplistic terms, partitioning is a way of organizing your data by grouping datasets with
similar attributes together in a storage entity, such as a folder. When your data processing
pipeline is querying for data with that similar attribute (E.g. all the data in the past 12
hours), the partitioning scheme (in this case, done by DateTime) lets you skip over the
irrelevant data and only seek the data that you want.

For Blob Storage
If you remember, we discussed how every blob lives inside a blob container that we
create. However, these containers are logical entities, so there is no guarantee that
the data blobs we create will land in the same partition.

However, Azure implements range partitioning using lexical sequence i.e.
filenames File1, File2, .. may end up in the same partition when compared to OldFile1,
OldFile2, .. which may end up in a different partition.

Azure Storage uses <account name + container name + blob name> as the
partition key.

For ADLS Gen2
Since ADLS is hierarchical in nature, implementing a folder structure will take care of
the partitioning strategy. Try to follow something like
{Region}/{SubjectMatter(s)}/{yyyy}/{mm}/{dd}/{hh}/

✅ How to organize data? (Best Practice - more
reading)

As an example, think of the raw data as

💻 DP-203 Notes by Neil Bagchi 19

a lake/pond with water in its natural
state, the data is ingested and stored as
is without transformations, and the
enriched data is water in a reservoir that
is cleaned and stored in a predictable
state (schematized in the case of our
data), the curated data is like bottled
water that is ready for consumption.
Workspace data is like a laboratory
where scientists can bring their own for
testing. It's worth noting that while all
these data layers are present in a single
logical data lake, they could be spread
across different physical storage
accounts. In these cases, having a
metastore is helpful for discovery.

Raw data: This is data as it comes from the source systems. This data is stored as is
in the data lake and is consumed by an analytics engine such as Spark to perform
cleansing and enrichment operations to generate the curated data. The data in the
raw zone is sometimes also stored as an aggregated data set, e.g. in the case of
streaming scenarios, data is ingested via a message bus such as Event Hub, and then
aggregated via a real-time processing engine such as Azure Stream Analytics or
Spark Streaming before storing in the data lake.

Enriched data: This layer of data is the version where raw data (as is or aggregated)
has a defined schema and also, and the data is cleansed, and enriched (with other
sources), and is available to analytics engines to extract high-value data.

Curated data: This layer of data contains the high-value information that is served to
the consumers of the data – the BI analysts and the data scientists. This data has
structure and can be served to the consumers either as is (E.g. data science
notebooks) or through a data warehouse. Data assets in this layer are usually highly
governed and well documented.

Workspace data: In addition to the data that is ingested by the data engineering team
from the source, the consumers of the data can also choose to bring other data sets
that could be valuable. In this case, the data platform can allocate a workspace for

💻 DP-203 Notes by Neil Bagchi 20

these consumers so they can use the curated data along with the other data sets they
bring to generate valuable insights.

Archive data: This is an organization’s data ‘vault’ - that has data stored to primarily
comply with retention policies and has very restrictive usage, such as supporting
audits. You can use the Cool and Archive tiers in ADLS Gen2 to store this data.

✅ Latency metrics
Request rate is measured in Input/output operations per second (IOPS). The request
rate is calculated by dividing the time it takes to complete one request by the number of
requests per second. E.g. Let us assume that a request from a single thread application
with one outstanding read/write operation takes 10 ms to complete.

Request Rate = 1sec/10ms = 1000ms/10ms = 100 IOPS

This means the outstanding read/write would achieve a request rate of 100 IOPS.

Azure Storage provides two latency metrics for block blobs. These metrics can be viewed
in the Azure portal:

End-to-end (E2E) latency measures the interval from when Azure Storage receives
the first packet of the request from a client until Azure Storage receives a client
acknowledgment on the last packet of the response.

Server latency measures the interval from when Azure Storage receives the last
packet of the request from a client until the first packet of the response is returned
from Azure Storage.

💻 DP-203 Notes by Neil Bagchi 21

✅ Storage Account Security Features
Azure Storage provides a layered security model. We can use this model to secure our
storage accounts to a specific set of supported networks. Network rules allow only
applications that request data over the specified networks to access our storage account.

Authorization is supported by a public preview of Azure Active Directory credentials (for
blobs and queues), a valid account access key, or a shared access signature (SAS)
token. Data encryption is enabled by default, and you can proactively monitor systems by
using Advanced Threat Protection.

💻 DP-203 Notes by Neil Bagchi 22

1) Access keys
Each storage account has two
unique access keys that are used to
secure the storage account. If your app
needs to connect to multiple storage
accounts, your app will require an access
key for each storage account.

📌 TIP: Periodically rotate access keys to ensure they remain private, just like
changing your passwords. We can also use an Azure Key Vault to store the
access key which includes the support to synchronize directly to the Storage
Account and automatically rotate the keys periodically.

2) Shared Access Signatures (SAS)
For external third-party applications, use a shared access signature (SAS). A SAS is a
string that contains a security token that can be attached to a URL. You can use SAS

💻 DP-203 Notes by Neil Bagchi 23

to delegate access to storage objects and specify constraints, such as the permissions
and the time range of access.

Azure doesn’t track SAS after creation.
Additionally, SAS tokens are tied to the
access keys indirectly so to invalidate a
SAS token, we need to regenerate/refresh
the access keys. This can be painful to
keep track of and continuously regenerate
the keys. So an alternative is to use the
Stored Access Policy.

📌 A stored access policy groups together shared access signatures and
provides additional restrictions for signatures that are bound by the policy. We
can use a stored access policy to change the start time, expiry time, or
permissions for a signature. We can also use a stored access policy to revoke
a signature after it has been issued.

3) Role-based access control (RBAC)
Azure role-based access control (Azure RBAC) helps manage who has access to Azure
resources, what they can do with those resources, and what data they have access to.
For ex:

1) Security Pricipal: A security principal is an object
that represents a user, group, service principal, or
managed identity that is requesting access to Azure
resources. You can assign a role to any of these
security principals.

💻 DP-203 Notes by Neil Bagchi 24

2) Role Definition: A role definition is a collection of
permissions. It's typically just called a role. A role
definition lists the actions that can be performed,
such as read, write, and delete. Azure has a huge list
of predefined roles, such as Owner, Contributor, and
Reader, etc with the right list of permissions, already
assigned.

3) Scope: Scope is the set of resources that the
access applies to.

4) Access Control Lists (ACL)
In the POSIX-style model, permissions for an item are stored on the item itself. In other
words, permissions for an item cannot be inherited from the parent items if the
permissions are set after the child item has already been created. Permissions are only
inherited if default permissions have been set on the parent items before the child items
have been created.

💻 DP-203 Notes by Neil Bagchi 25

We can associate a security principal with an
access level for files and directories. Each
association is captured as an entry in an access
control list (ACL). Each file and directory in your
storage account has an access control list. When a
security principal attempts an operation on a file or
directory, an ACL check determines whether that
security principal has the correct permission level to
perform the operation.

📌 ACL can never supersede an RBAC role. It can only augment the role with
additional permissions. For ex: A user who has been provided RBAC on blob
storage whereas in the ACL list, has been denied all the read, write and
execute permissions will still have this permission through the RBAC role.

📌 RBAC provides course grain permissions to the data lake or to folders inside it.
These are used to allow or deny permissions to the folder structure but
typically do not dictate the ability of the user to perform actions against the
data.
ACLs are used to define the fine grain permissions to the data, this is where
the ability of the user to read, write, modify or delete the data is set.

5) Firewalls and Virtual Networks
Azure Storage provides a layered security model. Storage accounts having a public
endpoint is accessible through the internet. We can also create Private Endpoints for your
storage account, which assigns a private IP address from our VNet to the storage
account, and secures all traffic between our VNet and the storage account over a private
link.

💻 DP-203 Notes by Neil Bagchi 26

Authorization is supported with Azure Active Directory (Azure AD) credentials for blobs
and queues, with a valid account access key, or with a SAS token. When a blob container
is configured for anonymous public access, requests to read data in that container do not
need to be authorized, but the firewall rules remain in effect and will block anonymous
traffic.

6) Encryption at Transit

Encryption at Transit refers to encrypting the data that is being
moved from one place to another. Examples of data movement
could be data being read by an application, data getting
replicated to a different zone, or data being downloaded from
the cloud.

💻 DP-203 Notes by Neil Bagchi 27

Encryption at transit is achieved by
enabling Transport Layer Security
(TLS). For HTTP-based services, it means
using HTTPS protocol to make sure that
data is not readable when it is on the
move. Most of the Azure services provide
configuration settings to enable TLS. This
option is also enabled by default and
users can disable it if for any reason they
don’t need it.

7) Encryption at Rest

Encryption at rest is the process of encrypting data before
writing it to disks and decrypting the data when requested by
applications.

Encryption at rest is enabled by default and can’t be disabled. All data written to Azure
Storage is automatically encrypted by Storage Service Encryption (SSE) with a 256-bit
Advanced Encryption Standard (AES) cipher.

SSE automatically encrypts data when writing it to Azure Storage. When you read data
from Azure Storage, Azure Storage decrypts the data before returning it. This process
incurs no additional charges and doesn't degrade performance. It can't be disabled.

✅ Azure Data Factory
A good youtube video for an introduction to ADF

ADF provides a cloud-based ETL solution that orchestrates data
movement by scheduling data pipelines and transforming data
at scale between various data stores and compute resources.

Secure Transfer required = Encryption at transit

💻 DP-203 Notes by Neil Bagchi 28

Collect Phase

Define and connect
all the required
sources of data
together, such as
databases, file
shares, and FTP
web services

Transform &
Analyse

Compute
services such as
Databricks can
be used to
prepare
transformed data
to feed prod
environments
with cleansed
and transformed
data

Publish Phase

Finally, load the
data onto a
destination-
Azure Data
Warehouse,
Azure SQL
Database, Azure
Cosmos DB, or
any other service
for consumption

Monitor Phase

built-in support for
pipeline monitoring
via Azure Monitor,
API, PowerShell,
Azure Monitor logs,
and health panels
on the Azure portal

💻 DP-203 Notes by Neil Bagchi 29

✅ ADF Top Level Concepts
Azure Data Factory is composed of key components.

→ Pipeline → Activities → Datasets → Linked Service →
Data Flows
→ Integration Runtimes → Triggers → Parameters

Azure Data Factory can have one or more pipelines. A pipeline is a logical grouping of
activities that together perform a task. For example, a pipeline could contain a set of
activities that ingest and clean log data, and then kick off a mapping data flow to analyze
the log data. The pipeline allows you to manage the activities as a set instead of each one
individually. You deploy and schedule the pipeline instead of the activities independently.

Now, a dataset is a named view of data that simply points or references the data you
want to use in your activities as inputs and outputs. Before you create a dataset, you
must create a linked service to link your data store to the Data Factory. Linked services
are like connection strings, which define the connection information needed for the
service to connect to external resources.

Think of it this way; the dataset represents the structure of the data within the linked data
stores, and the linked service defines the connection to the data source. For example, to
copy data from Blob storage to a SQL Database, you create two linked services: Azure
Storage and Azure SQL Database. Then, create two datasets: an Azure Blob dataset
(which refers to the Azure Storage linked service) and an Azure SQL Table dataset (which
refers to the Azure SQL Database linked service).

In Data Flow, datasets are used in source and sink transformations. The datasets define
the basic data schemas. If your data has no schema, you can use schema drift for your
source and sink (more on schema drift later). Pipeline runs are typically instantiated by

💻 DP-203 Notes by Neil Bagchi 30

passing arguments to parameters that you define in the pipeline. You can execute a
pipeline either manually or by using a trigger. We have the following triggers in ADF:
scheduled, tumbling window, and event-based (more on this later).

Finally, The Integration Runtime (IR) provides the compute infrastructure for completing
a pipeline. We have the same three types of IR: Azure, Self-hosted, and Azure-SSIS
(more on this later).

✅ Linked Service
The Linked Service represents the connection information that enables the ingestion of
data from external resources such as a data store (Azure SQL Server) or compute
service (Spark Cluster).

✅ Dataset
Datasets represent data structures within your data stores. These point to (or reference)
the data that we want to use in our activities and are referenced by the Linked service.

💻 DP-203 Notes by Neil Bagchi 31

✅ Pipeline
A pipeline represents a logical grouping of activities where the activities together perform
a certain task. The advantage of using a pipeline is that you can more easily manage the
activities as a set.

📌 Annotations:
When monitoring data pipelines, you may want to be able to filter and monitor a
certain group of activities, such as those of a project or specific department's
pipelines. You can achieve these using annotations.

Annotations are tags that you can add (only static values) to pipelines,
datasets, linked services, and triggers to easily identify them. For more, click
here.

✅ Activity (Inside a pipeline)
Activities are actions that are performed on the data. An activity can take zero or more
input datasets and produce one or more output datasets. Activities contain the actual
transformation logic.

An activity that depends on one or more previous activities, can have different
dependency conditions. The four dependency conditions are: Succeeded, Failed,
Skipped, and Completed.

💻 DP-203 Notes by Neil Bagchi 32

Because there are many activities that are possible in a pipeline in Azure Data Factory,
activities can be grouped into three categories:

1) Data movement activities:
The Copy Activity in the Data Factory copies data from a source data store to a sink data
store. Supported stores include all Azure offerings, selected SAP offerings, and much
more. For a detailed list, click here.

1. All activities that can be used within the pipeline.
2. The pipeline editor canvas, where activities will appear when added to the pipeline.

3. The pipeline configurations pane, including parameters, variables, general settings, and output.
4. The pipeline properties pane, where the pipeline name, optional description, and annotations can be

configured. This pane will also show any related items to the pipeline within the data factory.

💻 DP-203 Notes by Neil Bagchi 33

2) Data transformation activities:
Data transformation activities can be performed natively within the authoring tool of Azure
Data Factory using the Mapping Data Flow. Alternatively, you can call a compute
resource to change or enhance data through transformation, or perform analysis of the
data. These include compute technologies such as Azure Databricks, Azure Batch, SQL
Database and Azure Synapse Analytics. For details, click.

3) Control flow activities:

Control flow is a group of pipeline activities that includes chaining
activities in a sequence, branching, defining parameters at the
pipeline level, and passing arguments while invoking the pipeline on
demand or from a trigger.

These are activities that can affect the path of execution.

Append Variable: Used to add a value to an existing
array variable.

Set Variable: Used to set the value of an existing
variable of type String, Bool, or Array.

💻 DP-203 Notes by Neil Bagchi 34

Execute Pipeline: Allows a pipeline to invoke another
pipeline.

If Condition: Allows directing pipeline execution, based
on evaluation of certain expressions.

Get Metadata: Used to retrieve metadata of any data in
ADF.

ForEach: Defines a repeating control flow in your
pipeline. ADF can start multiple activities in parallel
using this approach.

Lookup: Retrieve a dataset from any of the ADF-
supported data sources. Can be used for delta loads.

Filter: Used to apply a filter expression to an input array.

Until: Executes a set of activities in a loop until the
condition associated with the activity evaluates to true.

Wait: Wait activity allows pausing pipeline execution for
the specified time period.

For reading more about these individual activities, click here.

✅ Data Flows

Data Flows are used to build code-free transformation data flows/
transformation logic that is executed on automatically provisioned
Apache Spark clusters. ADF internally handles all the code
translation, spark optimization, and execution of the transformation.

Control Flow Activity Data Flow Transformation

Affects the execution sequence or path of the
pipeline

Transforms the ingested data

Can be recursive Non-recursive

No source/sink Source and sink are required

Implemented at the pipeline level Implemented at the activity level

💻 DP-203 Notes by Neil Bagchi 35

1) Transforming data using the Mapping Data Flow
(present in both ADF and Synapse Analytics)

Data flow has a unique authoring canvas designed to make building transformation logic
easy. The data flow canvas is separated into three parts: the top bar, the graph, and the
configuration panel.

➖ Debug mode: Here you can actually

💻 DP-203 Notes by Neil Bagchi 36

see the results of each transformation. In
the debug mode session, the data flow
runs interactively on a Spark cluster. In
the debug mode you will be charged on an
hourly basis when the cluster is active. It
typically takes 5-7 minutes for the cluster
to spin up. With this mode, you are able to
build your data flow step by step and view
the data as it runs through each
transformation phase.

→ Graph
The graph displays the transformation stream. It
shows the lineage of source data as it flows into
one or more sinks. To add a new source,
select Add source. To add a new
transformation, select the plus sign on the lower
right of an existing transformation.

→ Configuration panel
The configuration panel shows the settings specific to the currently selected
transformation. If no transformation is selected, it shows the data flow. In the overall data
flow configuration, you can add parameters via the Parameters tab. Each transformation
contains at least four configuration tabs. Read more here

1) Transformation settings

If AutoResolveIntegrationRuntime is chosen, a
cluster with eight cores of general compute with a

default 60-minute time to live will be spun up.

💻 DP-203 Notes by Neil Bagchi 37

The first tab in each transformation's configuration pane contains the settings specific
to that transformation.

2) Optimize
The Optimize tab contains settings to configure partitioning schemes.

3) Inspect
The Inspect tab provides a view into the metadata of the data stream that you're
transforming. You can see column counts, the columns changed, the columns added,
data types, the column order, and column references. Inspect is a read-only view of
your metadata. You don't need to have debug mode enabled to see metadata in
the Inspect pane.

💻 DP-203 Notes by Neil Bagchi 38

As you change the shape of your data through transformations, you'll see the
metadata changes flow in the Inspect pane. If there isn't a defined schema in your
source transformation, then metadata won't be visible in the Inspect pane. Lack of
metadata is common in schema drift scenarios.

4) Data preview
If debug mode is on, the Data Preview tab gives you an interactive snapshot of the
data at each transform.

💻 DP-203 Notes by Neil Bagchi 39

Mapping Data Flows provides a number of different transformations
types that are broken down into the following categories:
Multiple input/output
transformations

These transformations will
generate new data
pipelines or merge into
one e.g. union of multiple
data streams

Schema modifier
transformations

Make a modification to a
sink destination by creating
new columns based on the
action of the transformation
e.g. derived column after
performing some operation
on the existing column

Row modifier
transformations

These impact how the
rows are presented in
the sink e.g. sorting of
a particular column

Note: Filter transformation in data flow is different from Filter activity in control
flow

Example of Mapping Data Flow

💻 DP-203 Notes by Neil Bagchi 40

Link showing the detailed implementation steps or here. To learn
about optimizing data flow, check this link.

1.a) Data Flow Expression Builder
Some of the transformations can be defined using a Data Flow Expression Builder that
will enable you to customize the functionality of a transformation using columns, fields,
variables, parameters, and functions from your data flow in these boxes.

Here is a sample expression that can be used to create date directories and automatic
partitioning:

💻 DP-203 Notes by Neil Bagchi 41

"staging/driver/out/" + toString(year(currentDate())) + "/" +
toString(month(currentDate())) + "/" + toString(dayOfMonth(currentDate()))

💻 DP-203 Notes by Neil Bagchi 42

📌 Schema Drift

Schema drift is the case where your sources often change metadata. Fields,
columns, and, types can be added, removed, or changed on the fly. Without
handling schema drift, your data flow becomes vulnerable to upstream data
source changes.

Schema drift in Source
Schema drift in Sink

If schema drift is enabled, make sure the Auto-mapping slider in the Mapping tab is turned
on. With this slider on, all incoming columns are written to your destination. Otherwise, you

must use rule-based mapping to write drifted columns.

💻 DP-203 Notes by Neil Bagchi 43

2) Transforming data using Wrangling Data Flows
(ADF only, not present in Synapse Analytics)
Wrangling data flow is used for data prepping using Power Query

✅ Parameters

In the Derived Column transformation, each drifted column is mapped to its detected name
and data type

💻 DP-203 Notes by Neil Bagchi 44

Parameters are used to pass external values into pipelines,
datasets, linked services, and data flows. These are key-value
pairs of read-only configuration. Once the parameter has been
passed into the resource, it cannot be changed. By parameterizing
resources, you can reuse them with different values each time. This
reduces redundancy in your ETL pipelines and improves flexibility.

1) Dataset Parameters
When working with a database with multiple tables in it, instead of creating a new dataset
for using each of them, dataset parameters can be used to pass the table names at run
time.

You will need to create a dataset without mentioning the table name while creating it

Parameters have to be added in the
parameters tab. In the example for
creating the Azure SQL dataset, we
have added two parameters, one for
the schema name and the other for
the name of the table.

Click on edit below the table. Then we
can click on add dynamic content
which will appear below the table.
After clicking on that we will be able to
see the parameters we added.

We can click on the parameters we
want to add by clicking on them. It will
look like this

After saving this dataset, You can
pass table name and schema names

💻 DP-203 Notes by Neil Bagchi 45

parameters inside the pipeline. ADF
will ask for these values when we
trigger/debug the pipeline.

2) Linked Service Parameters
Linked service parameters can be used to parameterize the domain name, database
name, username, and password for the database.

In the following example, we are
creating a new Azure SQL database.
Go to the linked service in the monitor
tab of ADF and create a new linked
service. When we create a new linked
service, we will see the option of
parameters, scrolling down to the
bottom.

These can be used in the linked
service connection. In order to use
these parameters whenever we create
a new dataset, we can create dataset
parameters.

💻 DP-203 Notes by Neil Bagchi 46

Here parameters are added while
creating the Azure SQL dataset, to
pass the values to the linked service

In the linked service itself, if we select
the linked service with parameters in
it, we will see Linked service
properties, where we can either
hardcode the values or pass dataset
parameters to use them at the run
time.

We will see the dataset properties in
the pipeline where we can pass the
values.

💻 DP-203 Notes by Neil Bagchi 47

3) Pipeline Parameters
Pipeline parameters can be created
by clicking on the blank space in the
pipeline

These can be accessed by using the
syntax @pipeline().parameters.
<parameter name>

4) Parameters in Mapping Data Flow
There are three options for setting the values in the data flow activity expressions:

Use the pipeline control flow expression language to set a dynamic value.

Use the data flow expression language to set a dynamic value.

Use either expression language to set a static literal value.

The reason for parameterizing mapping data flows is to make sure that your data flows
are generalized, flexible, and reusable.

Data flow is one of the activities in ADF pipeline, so the way to pass the parameters
to it is the same as passing pipeline parameters above.

When we create a dataflow we can
select any parameterized dataset, for
example, we have selected the
dataset from the DATASET
PARAMETERS section below.

Now when we add dataflow activity in
the pipeline and select the above
dataflow, we will see the source1
parameters option to pass the table
name and schema name.

💻 DP-203 Notes by Neil Bagchi 48

If we want to access these during
debugging the dataflow and not in the
pipeline itself, we can see debug
settings beside it. Inside the setting,
we have the option to define the
parameters.

Link to an example showing Integration of a Notebook within Azure Synapse
Pipelines

✅ Integration Runtime
ADF is a managed service (PaaS) i.e it will create the required computing infrastructure to
complete the activity. This is known as integration runtime. Thus IR provides a fully
managed, serverless computing infrastructure. There are three types of Integration
Runtime which are discussed later.

The Integration Runtime (IR) is the compute infrastructure used by Azure Data Factory
and Azure Synapse pipelines to provide the following data integration capabilities across
different network environments:

Data Flow: Execute a Data Flow in a managed Azure compute environment.

Data movement: Copy data across data stores in a public or private network (for
both on-premises or virtual private networks).

Activity dispatch: Dispatch and monitor transformation activities running on a variety
of compute services such as Azure Databricks, Azure HDInsight, ML Studio (classic),
Azure SQL Database, SQL Server, and more.

SSIS package execution: Natively execute SQL Server Integration Services (SSIS)
packages in a managed Azure compute environment.

💻 DP-203 Notes by Neil Bagchi 49

1) Azure Integration Runtime

Works on public networks.
Provides Data Flow, Data movement and Activity dispatch

💻 DP-203 Notes by Neil Bagchi 50

There is auto-resolve Azure IR option that automatically detects the sink and source
data store to choose the best location either in the same region if available or the closest
one in the same geography. Its best to avoid this feature and manually enter the
locations.

2) Self-hosted Integration Runtime

Works on public and private networks
Provides Data movement and Activity dispatch

💻 DP-203 Notes by Neil Bagchi 51

The self-hosted integration runtime is logically registered to the Azure Data Factory
and the compute resource used to support its function is provided by you. Therefore there
is no explicit location property for self-hosted IR. In order to use the on-premise
infrastructure, we need to register the server and install the self-hosted IR.

3) Azure SSIS Integration Runtime

Works on public and private networks
Supports SSIS package execution

The Azure-SSIS IR is a fully managed cluster of Azure VMs dedicated to running your
SSIS packages.

Link to an example showing the detailed implementation steps

✅ Triggers

💻 DP-203 Notes by Neil Bagchi 52

Triggers are used to schedule a Data Pipeline runs without any
interventions. In other words, it’s a processing unit that
determines when to begin or invoke an end-to-end pipeline
execution

Azure Data Factory Triggers come in three different types: Schedule Trigger, Tumbling
Window Trigger, and Event-based Trigger.

1) Schedule Trigger
This Azure Data Factory Trigger is a popular
trigger that can run a Data Pipeline according to
a predetermined schedule. It provides extra
flexibility by allowing for different scheduling
intervals like a minute(s), hour(s), day(s),
week(s), or month(s).

The Schedule Azure Data Factory Triggers are
built with a “many to many” relationship in
mind, which implies that one Schedule Trigger
can run several Data Pipelines, and a single

💻 DP-203 Notes by Neil Bagchi 53

Data Pipeline can be run by multiple Schedule
Triggers.

2) Tumbling Window Trigger
The Tumbling Window Azure Data Factory Trigger executes Data Pipelines at
a specified time slice or pre-determined periodic time interval. It is significantly more
advantageous than Schedule Triggers when working with historical data to copy or
migrate data.

Consider the scenario in which you need to replicate data from a Database into a Data
Lake on a regular basis, and you want to keep it in separate files or folders for every hour
or day.

To implement this use case, you have to set a Tumbling Window Azure Data Factory
Trigger for every 1 hour or every 24 hours. The Tumbling Window Trigger sends the start
and end times for each time window to the Database, returning all data between those
periods. Finally, the data for each hour or day can be saved in its own file or folder.

Dependency
Offset

Dependency
Size

Self Dependency

💻 DP-203 Notes by Neil Bagchi 54

3) Event-based Trigger
The Event-based Azure Data Factory Trigger
runs Data Pipelines in response to blob-
related events, such as generating or deleting
a blob file present in Azure Blob Storage.

In addition, Event-based Triggers are not only
compatible with blob, but also with Azure Data
lake Storage. Event Triggers also work
on many-to-many relationships, in which a
single Event Trigger can run several Pipelines,
and a single Pipeline can be run by multiple
Event Triggers

✅ Debug and Publish a pipeline
(link - introduction to debugging provided in mapping data flow)

Azure Data Factory can help iteratively debug Data Factory pipelines when developing
data integration solutions. You don't need to publish changes in the pipeline or activities

💻 DP-203 Notes by Neil Bagchi 55

before you debug. This is helpful in a scenario where you want to test the changes and
see if it works as expected before you actually save and publish them.

Sometimes, you don't want to debug the whole pipeline but test a part of the pipeline. You
can test the pipeline end to end or set a breakpoint. By doing so in debug mode, you can
interactively see the results of each step while you build and debug your pipeline.

✅ Manage Source Control (CI/CD)
Azure Data Factory integrates with Azure DevOps and GitHub to allow easy source
control and effective continuous integration and delivery. Azure Data Factory also offers a
variety of both visual and programmatic monitoring services to also support the
monitoring of your pipelines.

Link showing the detailed implementation steps

✅ Azure Databricks
Databricks is a comprehensive data analytics solution built on
Apache Spark and offers native SQL capabilities as well as
workload-optimized Spark clusters for data analytics and data
science. Databricks provides an interactive user interface

💻 DP-203 Notes by Neil Bagchi 56

through which the system can be managed and data can be
explored in interactive notebooks.

Remember that Spark is a replacement for MapReduce, not Hadoop. It's a part of the
ecosystem. Thus, Spark requires two more things to work: Storage (local
storage/HDFS/Amazon S3) and Resource Manager (YARN/Mesos/Kubernetes). Spark is

💻 DP-203 Notes by Neil Bagchi 57

written in SCALA but it officially supports Java, Scala (most used), Python (PySpark),
and R.

Apache Spark supports data
transformations with three different
Application Programming Interfaces
(APIs): Resilient Distributed Datasets
(RDDs), DataFrames, and Datasets.

However, in the latest version, dataset and
dataframe are combined to be called a
dataset.

Azure Databricks is an amalgamation of multiple technologies that enable you to work
with data at scale.

Workspace
It is an environment for accessing all of Azure Databricks assets. The workspace
organizes objects such as notebooks, libraries, queries, and dashboards into folders, and
provides access to data and computational resources such as clusters and jobs. Each
workspace is isolated from others and each workspace has its own identifier.

Azure Databricks Architecture
Databricks can process the data from ADLS without importing the data into Databricks by

mounting on it

💻 DP-203 Notes by Neil Bagchi 58

Databricks File System (DBFS)
DBFS is a filesystem abstraction layer over a blob store. While each cluster node has its
own local file system (on which the operating system and other node-specific files are
stored), the cluster nodes also have access to a shared, distributed file system that they
can access and operate on. The Databricks File System (DBFS) enables you to mount
cloud storage and use it to work with persistent file-based data.

Apache Spark clusters
Spark is a distributed data processing solution that makes use of clusters to scale
processing across multiple compute nodes. Each Spark cluster has a driver node to
coordinate processing jobs and one or more worker nodes on which the processing
occurs. This distributed model enables each node to operate on a subset of the job in
parallel; reducing the overall time for the job to complete.

1) Interactive Cluster-
Multiple users can interactively analyze the data together. Need to terminate the cluster
after job completion. These are comparatively costly and can autoscale on demand.

1. Standard Cluster Mode- This is used for single-user use, and provides no fault
isolation. Supports Scala, Python, SQL, R, and Java.

2. High Concurrency Cluster Mode- This is used for multiple users, and provides
fault isolation along with maximum cluster utilization. Supports only Python, SQL
& R. The performance, security, and fault isolation of high concurrency clusters is
provided by running user code in separate processes, which is not possible in
Scala.

💻 DP-203 Notes by Neil Bagchi 59

2) Automated/Job Cluster-
These are auto-created and auto-terminated for running automated jobs. These provide
high throughput with auto-scaling capability although being comparatively cheaper.

💻 DP-203 Notes by Neil Bagchi 60

Notebooks
One of the most common ways to work with Spark is by writing code in notebooks.
Notebooks provide an interactive environment in which you can combine text and
graphics in Markdown format with cells containing code that you run interactively in the
notebook session.

Hive metastore
Hive is an open-source technology used to define a relational abstraction layer of tables
over file-based data. The tables can then be queried using SQL syntax. The table
definitions and details of the file system locations on which they're based are
stored in the metastore for a Spark cluster. A Hive metastore is created for each
cluster when it's created, but you can configure a cluster to use an existing external
metastore if necessary.

Delta Lake

💻 DP-203 Notes by Neil Bagchi 61

Delta Lake builds on the relational table schema abstraction over files in the data lake to
add support for SQL semantics commonly found in relational database systems.
Capabilities provided by Delta Lake include transaction logging, data type constraints,
and the ability to incorporate streaming data into a relational table.

SQL Warehouses
SQL Warehouses are relational compute resources with endpoints that enable client
applications to connect to an Azure Databricks workspace and use SQL to work with data
in tables. SQL Warehouses are only available in premium tier Azure Databricks
workspaces.

✅ Internal working
In Databricks, the notebook interface is typically the driver program. SparkContext, an
object of the driver program runs the main function, creates distributed datasets on the
cluster, applies parallel operations to the cluster nodes, and then collects the results of
the operations.

Driver programs access Apache Spark through a SparkSession object. The nodes read
and write data from and to the file system and cache transformed data in-memory as
Resilient Distributed Datasets (RDDs). The SparkContext is responsible for converting
an application to a directed acyclic graph (DAG). The graph consists of individual tasks
that get executed within an executor process on the nodes. Each application gets its own
executor processes, which stays up for the duration of the whole application and run
tasks in multiple threads.

✅ How Azure manages cluster resources
Microsoft Azure manages the cluster, and auto-scales it as needed based on your usage
and the setting used when configuring the cluster. Spark parallelizes jobs at two levels:

The first level of parallelization is the executor - a Java virtual machine (JVM)
running on a worker node, typically, one instance per node.

The second level of parallelization is the slot - the number of which is determined by
the number of cores and CPUs of each node.

Each executor has multiple slots to which parallelized tasks can be assigned.

💻 DP-203 Notes by Neil Bagchi 62

When you create an Azure Databricks workspace, a resource group is created that
contains the driver and worker VMs for your clusters, along with other required resources,
including a virtual network, a security group, and a storage account. All metadata for your
cluster, such as scheduled jobs, is stored in an Azure Database with geo-replication for
fault tolerance. Internally, Azure Kubernetes Service (AKS) is used to run the Azure
Databricks control plane and data planes via containers.

Mounting file-based storage to DBFS using Service Principal allows seamless access to data from the
storage account without requiring credentials after the first time

💻 DP-203 Notes by Neil Bagchi 63

✅ Transformations usually performed on a dataset

Basic Transformations
Normalizing values
Missing/Null data
De-duplication
Pivoting Data frames

Advanced Transformations
User Defined functions
Joins and lookup tables
Multiple databases

Mount a data lake
dbutils.fs.mount(
 source = "abfss://<file-system-name>@<storage-account-name>.dfs.core.windows.net/",
 mount_point = "/mnt/<mount-name>",
 extra_configs = {config_key:key_name})

💻 DP-203 Notes by Neil Bagchi 64

Load a dataframe
%%pyspark
df = spark.read.load('/data/products.csv',
 # or 'abfss://container@store.dfs.core.windows.net/data/products.csv'
 format='csv',
 header=True
)
display(df.limit(10))

Specify a schema for a dataframe to be loaded
from pyspark.sql.types import *
from pyspark.sql.functions import *

productSchema = StructType([
 StructField("ProductID", IntegerType()),
 StructField("ProductName", StringType()),
 StructField("Category", StringType()),
 StructField("ListPrice", FloatType())
])

df = spark.read.load('/data/product-data.csv',
 format='csv',
 schema=productSchema,
 header=False)
display(df.limit(10))

#Filtering
pricelist_df = df["ProductID", "ListPrice"]
bikes_df = df["ProductName", "ListPrice"].where((df["Category"]=="Mountain Bikes") | (df["C
ategory"]=="Road Bikes"))

#Grouping
counts_df = df.select("ProductID", "Category").groupBy("Category").count()

We can use the %%sql magic to run SQL code that queries objects in the catalog
%%sql

SELECT Category, COUNT(ProductID) AS ProductCount
FROM products
GROUP BY Category
ORDER BY Category

PySpark code uses a SQL query to return data
bikes_df = spark.sql("SELECT ProductID, ProductName, ListPrice \
 FROM products \
 WHERE Category IN ('Mountain Bikes', 'Road Bikes')")

Get the data as a Pandas dataframe
data = spark.sql("SELECT Category, COUNT(ProductID) AS ProductCount \
 FROM products \

💻 DP-203 Notes by Neil Bagchi 65

 GROUP BY Category \
 ORDER BY Category").toPandas()

✅ Delta lake
Delta Lake is an open-source storage layer for Spark that enables relational database
capabilities for batch and streaming data. By using Delta Lake, you can implement a data
lakehouse architecture in Spark to support SQL based data manipulation semantics with
support for transactions and schema enforcement. The result is an analytical data store
that offers many of the advantages of a relational database system with the flexibility of
data file stored in a data lake.

The benefits of using Delta Lake in Azure Databricks include:

Relational tables that support querying and data modification. With Delta Lake,
you can store data in tables that support CRUD (create, read, update, and delete)
operations. In other words, you can select, insert, update, and delete rows of data in
the same way you would in a relational database system.

Support for ACID transactions. Relational databases are designed to support
transactional data modifications that provide atomicity (transactions complete as a
single unit of work), consistency (transactions leave the database in a consistent
state), isolation (in-process transactions can't interfere with one another),
and durability (when a transaction completes, the changes it made are persisted).
Delta Lake brings this same transactional support to Spark by implementing a
transaction log and enforcing serializable isolation for concurrent operations.

Data versioning and time travel. Because all transactions are logged in the
transaction log, you can track multiple versions of each table row, and even use
the time travel feature to retrieve a previous version of a row in a query.

Support for batch and streaming data. While most relational databases include
tables that store static data, Spark includes native support for streaming data through
the Spark Structured Streaming API. Delta Lake tables can be used as
both sinks (destinations) and sources for streaming data.

Standard formats and interoperability. The underlying data for Delta Lake tables is
stored in Parquet format, which is commonly used in data lake ingestion pipelines.
Additionally, you can use the serverless SQL pool in Azure Synapse Analytics to
query Delta Lake tables in SQL.

💻 DP-203 Notes by Neil Bagchi 66

Load a file into a dataframe
df = spark.read.load('/data/mydata.csv', format='csv', header=True)

Save the dataframe as a delta table
delta_table_path = "/delta/mydata"
df.write.format("delta").save(delta_table_path)

Add new rows
new_rows_df.write.format("delta").mode("append").save(delta_table_path)

After saving the delta table, the path location you specified includes parquet files for the
data (regardless of the format of the source file you loaded into the dataframe) and
a _delta_log folder containing the transaction log for the table.

Note: The transaction log records all data modifications to the table. By logging each
modification, transactional consistency can be enforced and versioning information for the
table can be retained.

To make modifications to a Delta Lake table, you can use the DeltaTable object in the Del
ta Lake API, which supports update, delete, and merge operations. For example, you could us
e the following code to update the price column for all rows with a category column value o
f "Accessories"

from delta.tables import *
from pyspark.sql.functions import *

Create a deltaTable object
deltaTable = DeltaTable.forPath(spark, delta_table_path)

Update the table (reduce price of accessories by 10%)
deltaTable.update(
 condition = "Category == 'Accessories'",
 set = { "Price": "Price * 0.9" })

Query the previous version of a table
Delta Lake tables support versioning through the transaction log. The transaction log
records modifications made to the table, noting the timestamp and version number for
each transaction. You can use this logged version data to view previous versions of the
table - a feature known as time travel.

💻 DP-203 Notes by Neil Bagchi 67

You can retrieve data from a specific version of a Delta Lake table by reading the data
from the delta table location into a dataframe

df = spark.read.format("delta").option("versionAsOf", 0).load(delta_table_path)

OR

df = spark.read.format("delta").option("timestampAsOf", '2022-01-01').load(delta_table_pat
h)

Query catalog tables
You can also define Delta Lake tables as catalog tables in the Hive metastore for your
Spark cluster, and work with them using SQL.

Tables in a Spark catalog, including Delta Lake tables, can be managed or external; and
it's important to understand the distinction between these kinds of tables.

A managed table is defined without a specified location, and the data files are stored
within the storage used by the metastore. Dropping the table not only removes its
metadata from the catalog but also deletes the folder in which its data files are stored.

An external table is defined for a custom file location, where the data for the table is
stored. The metadata for the table is defined in the Spark catalog. Dropping the table
deletes the metadata from the catalog, but doesn't affect the data files.

Creating a catalog table from a dataframe
Save a dataframe as a managed table
df.write.format("delta").saveAsTable("MyManagedTable")

specify a path option to save as an external table
df.write.format("delta").option("path", "/mydata").saveAsTable("MyExternalTable")

Creating a catalog table using SQL
spark.sql("CREATE TABLE MyExternalTable USING DELTA LOCATION '/mydata'")

We can use the DeltaTableBuilder API (part of the Delta Lake API) to create a catalog tab
le
from delta.tables import *

DeltaTable.create(spark) \
 .tableName("default.ManagedProducts") \
 .addColumn("Productid", "INT") \
 .addColumn("ProductName", "STRING") \
 .addColumn("Category", "STRING") \

💻 DP-203 Notes by Neil Bagchi 68

 .addColumn("Price", "FLOAT") \
 .execute()

✅ Monitoring

1) Ganglia
Built-in databricks monitoring service that collects data every 15 min by default. We
can access this option by going into the cluster and select Metrics from the header.

2) Azure Monitor
No native support for Databricks so setting this up is cumbersome.

Dropwizard is used to send application metrics of Azure Databricks to Azure Monitor
whereas Log4j is used to send application logs to Azure Monitor.

Azure provides the Azure Databricks version for customers who love the features of Databricks Spark. It
provides HDInsight Spark for customers who prefer OSS technologies, and it also provides Synapse
Spark, which is a performance-boosted version of the OSS Spark for those customers who prefer an

integrated single-pane experience within Azure Synapse Analytics.

💻 DP-203 Notes by Neil Bagchi 69

✅ Azure Synapse Analytics - OLAP
Run analytics at a massive scale by using a cloud-based
enterprise data warehouse that takes advantage of massively
parallel processing (MPP) to run complex queries quickly
across petabytes of data.
Azure Synapse brings together the best of SQL technologies used in
enterprise data warehousing, Spark technologies used for big
data, Data Explorer for log and time series analytics, Pipelines for
data integration and ETL/ELT, and deep integration with other Azure
services such as Power BI, CosmosDB, and AzureML.

💻 DP-203 Notes by Neil Bagchi 70

✅ ASA Top Level Concepts

1) Azure Synapse Pipelines
are cloud-based ETL and data integration service that allows you to create data-driven
workflows for orchestrating data movement and transforming data at scale. Azure
Synapse uses Pipelines (the same Data Integration engine as Azure Data Factory), to
create rich at-scale ETL pipelines.

2) Azure Synapse SQL
Synapse SQL is a distributed query system for T-SQL that enables you to implement
data warehouse solutions or perform data virtualization. Azure Synapse SQL offers both
dedicated and serverless model of the service (more on this later).

3) Apache Spark for Azure Synapse
Azure Synapse seamlessly integrates Apache Spark for data preparation, data
engineering, ETL, and machine learning.

4) Azure Synapse Link
This enables a Hybrid Transactional/Analytical Processing (HTAP) architecture by
allowing near-real-time synchronization between operational data in Azure Cosmos DB,

Synapse Analytics is a unified platform for using ADF, ADLS, Power BI, etc

💻 DP-203 Notes by Neil Bagchi 71

Azure SQL Database, SQL Server, and analytical data storage that can be queried in
Azure Synapse Analytics.

5) Azure Synapse Data Explorer
This provides an interactive query experience to unlock insights from log and telemetry
data using the Kusto Query Language (KQL). Data Explorer analytics runtime is
optimized for efficient log analytics.

6) Synapse Studio
Synapse Studio provides a single way for enterprises to build solutions, maintain, and
secure all in a single user experience using a web-based portal

Perform key tasks: ingest, explore, prepare, orchestrate, visualize

Monitor resources, usage, and users across SQL, Spark, and Data Explorer

Use Role-based access control to simplify access to analytics resources

Write SQL, Spark, or KQL code and integrate with enterprise CI/CD processes

✅ WORKSPACE (SYNAPSE STUDIO)

✅ Synapse Studio

💻 DP-203 Notes by Neil Bagchi 72

1) Data Hub
The Data hub is where you access your provisioned SQL pool databases and SQL
serverless databases in your workspace, as well as external data sources, such as
storage accounts and other linked services.

Under the Workspace (2) tab of the Data hub (1), expand the SQLPool01 (3) SQL
pool underneath Databases.

Expand Tables and Programmability/Stored procedures.

The tables listed under the SQL pool store data from multiple sources, such as SAP
Hana, Twitter, Azure SQL Database, and external files copied over from an
orchestration pipeline. Synapse Analytics gives us the ability to combine these data
sources for analytics and reporting, all in one location.

💻 DP-203 Notes by Neil Bagchi 73

You will also see familiar database components, such as stored procedures. You can
execute the stored procedures using T-SQL scripts, or execute them as part of an
orchestration pipeline.

Select the Linked tab, expand the Azure Data Lake Storage Gen2 group, then
expand the primary storage for the workspace.

💻 DP-203 Notes by Neil Bagchi 74

Every Synapse workspace has a primary ADLS Gen2 account associated with it. This
serves as the data lake, which is a great place to store flat files, such as files copied
over from on-premises data stores, exported data or data copied directly from external
services and applications, telemetry data, etc. Everything is in one place.

In our example, we have several containers that hold files and folders that we can
explore and use from within our workspace. Here you can see marketing campaign
data, CSV files, finance information imported from an external database, machine
learning assets, IoT device telemetry, SAP Hana data, and tweets, just to name a few.

2) Develop
Expand each of the groups under the Develop menu. The Develop hub in our sample
environment contains examples of the following artifacts:

SQL scripts contains T-SQL scripts

💻 DP-203 Notes by Neil Bagchi 75

that you publish to your workspace.
Within the scripts, you can execute
commands against any of the
provisioned SQL pools or on-
demand SQL serverless pools to
which you have access.

Notebooks contain Synapse Spark
notebooks used for data engineering
and data science tasks. When you
execute a notebook, you select a
Spark pool as its compute target.

Data flows are powerful data
transformation workflows that use
the power of Apache Spark but are
authored using a code-free GUI.

Power BI reports can be embedded
here, giving you access to the
advanced visualizations they provide
without ever leaving the Synapse
workspace.

3) Integrate
Manage integration pipelines within the Integrate hub. If you are familiar with Azure
Data Factory, then you will feel at home in this hub. The pipeline creation experience
is the same as in ADF, which gives you another powerful integration built into Synapse
Analytics, removing the need to use Azure Data Factory for data movement and
transformation pipelines.

Expand Pipelines and select Master Pipeline (1). Point out the Activities (2) that can
be added to the pipeline, and show the pipeline canvas (3) on the right.

This Synapse workspace contains 16 pipelines that enable us to orchestrate data
movement and transformation steps over data from several sources.
The Activities list contains many activities that you can drag and drop onto the
pipeline canvas on the right.

💻 DP-203 Notes by Neil Bagchi 76

4) Monitor
The Monitor hub is your first stop for debugging issues and gaining insight on resource
usage. You can see a history of all the activities taking place in the workspace and
which ones are active now.

Show each of the monitoring categories grouped under Integration and Activities.

Pipeline runs shows all pipeline run activities. You can view the run details,
including inputs and outputs for the activities, and any error messages that
occurred. You can also come here to stop a pipeline, if needed.

Trigger runs shows you all pipeline runs caused by automated triggers. You can
create triggers that run on a recurring schedule or tumbling window. You can also
create event-based triggers that execute a pipeline any time a blob is created or
deleted in a storage container.

💻 DP-203 Notes by Neil Bagchi 77

Integration runtimes shows the status of all self-hosted and Azure integration
runtimes.

Apache Spark applications shows all the Spark applications that are running or
have run in your workspace.

SQL requests shows all SQL scripts executed either directly by you or another
user, or executed in other ways, like from a pipeline run.

Data flow debug shows active and previous debug sessions. When you author a
data flow, you can enable the debugger and execute the data flow without needing
to add it to a pipeline and trigger an execute. Using the debugger speeds up and
simplifies the development process. Since the debugger requires an active Spark
cluster, it can take a few minutes after you enable the debugger before you can
use it.

5) Manage
Show each of the management categories grouped under Analytics pools, External
connections, Integration, and Security.

SQL pools. Lists the provisioned SQL pools and on-demand SQL serverless
pools for the workspace. You can add new pools or hover over a SQL pool

💻 DP-203 Notes by Neil Bagchi 78

to pause or scale it. You should pause a SQL pool when it's not being used to
save costs.

Apache Spark pools. Lets you manage your Spark pools by configuring the auto-
pause and auto-scale settings. You can provision a new Apache Spark pool from
this blade.

Linked services. Enables you to manage connections to external resources.
Here you can see linked services for our data lake storage account, Azure Key
Vault, Power BI, and Synapse Analytics. Task: Select + New to show how many
types of linked services you can add.

Azure Purview (Preview). Provides integration with Azure Purview to provide
data governance and lineage within Azure Synapse Analytics.

Triggers. Provides you a central location to create or remove pipeline triggers.
Alternatively, you can add triggers from the pipeline.

💻 DP-203 Notes by Neil Bagchi 79

Integration runtimes. Lists the IR for the workspace, which serves as the
compute infrastructure for data integration capabilities, like those provided by
pipelines. Task: Hover over the integration runtimes to show the monitoring, code,
and delete (if applicable) links. Click on a code link to show how you can modify
the parameters in JSON format, including the TTL (time to live) setting for the IR.

Access control. This is where you go to add and remove users to one of three
security groups: workspace admin, SQL admin, and Apache Spark for Azure
Synapse Analytics admin.

Credentials. Contains objects that hold authentication information that can be
used by Azure Synapse Analytics.

Managed private endpoints. This is where you manage private endpoints, which
use a private IP address from within a virtual network to connect to an Azure
service or your own private link service. Connections using private endpoints
listed here provide access to Synapse workspace endpoints (SQL, SqlOndemand
and Dev).

Workspace packages. Workspace packages can be custom code or a specific
version of an open-source library that you would like to use in your Apache Spark
pools held in the Azure Synapse Analytics Workspace.

Git configuration. Enables you to connect your workspace to a Git repository to
enable source control

✅ SYNAPSE SQL (Important)

✅ Azure Synapse Architecture (dedicated SQL Pool)
When a user raises a work/query, the
following happens:

Step 1: Applications connect and issue
T-SQL commands to a Control node.
The Control node is the brain of the
architecture. It is the front end that
interacts with all applications and
connections. This node hosts the
distributed query engine (MPP), which

💻 DP-203 Notes by Neil Bagchi 80

optimizes the query for parallel
processing.

Step 2: Control node provides commands to multiple compute nodes (the number
depends on the option we selected during setup - DWU) which will work in parallel to
compute the query. The Compute nodes provide the computational power.
Distributions map to Compute nodes for processing.

Step 3: The Data Movement Service (DMS) is a system-level internal service that
moves data across the nodes as necessary to run queries in parallel and return
accurate results. The number of compute nodes ranges from 1 to 60 and is
determined by the service level for Synapse SQL.

Step 4: A key architectural component of dedicated SQL pools is the decoupled
storage that is segmented into 60 parts. The data is shared by these distributions in
the data layer to optimize the work performance. Distribution is the basic unit of
storage and parallel queries process these distributed data.

When Synapse SQL runs a query, the work is divided into 60 smaller queries that run
in parallel. Each of the 60 smaller queries runs on one of the data distributions. Each
Compute node manages one or more of the 60 distributions. Since there are 60
storage segments and a maximum of 60 MPP compute nodes within the highest
performance configuration of SQL Pools, a 1:1 file to compute node to storage
segment may be viable for ultra-high workloads.

With decoupled storage and compute, when using a dedicated SQL pool, we
can scale each of these independently.

📌 Azure Storage is divided into 60 segments called distributions
Additionally, we can have max 60 compute nodes for computation
So at the highest service level, each compute node will get 1
distribution to work on.
In other cases, each compute node can have more than 1 distributions
to process.

For best practices, check this link.

✅ Azure Synapse Architecture (serverless SQL Pool)

💻 DP-203 Notes by Neil Bagchi 81

For a serverless SQL pool, being
serverless, scaling is done automatically
to accommodate query resource
requirements. As topology changes over
time by adding, removing nodes, or
failovers, it adapts to changes and
makes sure your query has enough
resources and finishes successfully. For
example, the following image shows a
serverless SQL pool using four compute
nodes to execute a query.

If you use Apache Spark for Azure Synapse in your data pipeline, for data
preparation, cleansing, or enrichment, you can query external Spark tables
you've created in the process, directly from the serverless SQL pool. (more on
this later)

Serverless SQL Pool Dedicated SQL Pool

Perform unplanned or ad-hoc analysis work Build data warehouse

Only create external data tables If one needs to persist the data

Charged based on the amount of data processes
(as there’s no underlying infrastructure)

Charges based on DWU (Data Warehouse
Units)

For more detailed differences check this link. Also for best practices, check this.

✅ Designing a data warehouse (link)
Transactional Processing (OLTP) FACT &
DIMENSION TABLE

Analytical Processing (OLAP) FACT &
DIMENSION TABLE

Used for storing individual entries and
analysis on small sets of data

Analyses large batches of data

Access to recent data (maybe only 2022
data)

Access to older data going back years (all
historical data in order to perform analysis)

Updates data (individual transactions are
inserted, delete, and update)

Optimized for reading operations (only bulk data
should be uploaded, not optimized for individual
entries)

💻 DP-203 Notes by Neil Bagchi 82

Transactional Processing (OLTP) FACT &
DIMENSION TABLE

Analytical Processing (OLAP) FACT &
DIMENSION TABLE

Normalization concept applies and
architecture is generally SNOWFLAKE
schema

Strict adherence to normalization is not followed,
STAR schema is followed (i.e. one or more
dimension tables from SQL Database can be
merged and/or appended to get a single dimension
table in SQL Data Warehouse)

Faster real-time access Long-running jobs

Usually a single data source
Multiple data sources Dimension tables can be
connected from SQL Database, CSV files, and
more for analysis purposes

📌 Ideally, try to replace NULL values with some default values in the
dimension tables, as not doing this can give undesired results while using
reporting tools.
A Fact table can have NULL values with the exception of the key columns
which will be used for joining to the dimension table

Data integrity constraints
Dedicated SQL pools in Synapse Analytics don't support foreign
key and unique constraints as found in other relational database systems like
SQL Server. This means that jobs used to load data must maintain uniqueness and
referential integrity for keys, without relying on the table definitions in the database to
do so.

Transfer Data to a Dedicated SQL pool
In order to proceed ahead, we will need to set up a staging area where data from
the SQL database is first stored before it is moved into Azure Synapse.

-- Lab - Transfer data to our SQL Pool

-- First let's ensure we have the tables defined in the SQL pool

CREATE TABLE [dbo].[SalesFact](
 [ProductID] [int] NOT NULL,
 [SalesOrderID] [int] NOT NULL,
 [CustomerID] [int] NOT NULL,

💻 DP-203 Notes by Neil Bagchi 83

 [OrderQty] [smallint] NOT NULL,
 [UnitPrice] [money] NOT NULL,
 [OrderDate] [datetime] NULL,
 [TaxAmt] [money] NULL
)

CREATE TABLE [dbo].[DimCustomer](
 [CustomerID] [int] NOT NULL,
 [StoreID] [int] NOT NULL,
 [BusinessEntityID] [int] NOT NULL,
 [StoreName] varchar(50) NOT NULL
)

CREATE TABLE [dbo].[DimProduct](
 [ProductID] [int] NOT NULL,
 [ProductModelID] [int] NOT NULL,
 [ProductSubcategoryID] [int] NOT NULL,
 [ProductName] varchar(50) NOT NULL,
 [SafetyStockLevel] [smallint] NOT NULL,
 [ProductModelName] varchar(50) NULL,
 [ProductSubCategoryName] varchar(50) NULL
)

SELECT * FROM [dbo].[SalesFact]
SELECT COUNT(*) FROM [dbo].[SalesFact]

SELECT * FROM [dbo].[DimCustomer]
SELECT COUNT(*) FROM [dbo].[DimCustomer]

SELECT * FROM [dbo].[DimProduct]
SELECT COUNT(*) FROM [dbo].[DimProduct]

-- If we need to drop the tables

DROP TABLE [dbo].[SalesFact]

DROP TABLE [dbo].[DimCustomer]

DROP TABLE [dbo].[DimProduct]

Go to Synapse Studio → Integrate → Copy Data tool → Run Once now → Create
connection (define source settings)→ Select Azure SQL Database → Fill details
→ Select the required tables for copying → Create connection (define target
settings) → Select Azure Synapse → Fill details → Option to select column
mapping (if we want to drop certain columns) → Set the staging account details in
the Settings option → In the advanced option we have option to select the copying
procedure (PolyBase, Copy Command or Bulk insert) → review and deploy the
pipeline

💻 DP-203 Notes by Neil Bagchi 84

Reading JSON Files

-- Lab - Reading JSON files

-- Here we are using the OPENROWSET Function

SELECT TOP 100
 jsonContent
FROM
 OPENROWSET(
 BULK 'https://appdatalake7000.dfs.core.windows.net/data/log.json',
 FORMAT = 'CSV',
 FIELDQUOTE = '0x0b',
 FIELDTERMINATOR ='0x0b',
 ROWTERMINATOR = '0x0a' --Ensure this is different from field terminator
)
 WITH (
 jsonContent varchar(MAX)
) AS [rows]

-- The above statement only returns all as a single string line by line
-- Next we can cast to seperate columns

SELECT
 CAST(JSON_VALUE(jsonContent,'$.Id') AS INT) AS Id,
 JSON_VALUE(jsonContent,'$.Correlationid') As Correlationid,
 JSON_VALUE(jsonContent,'$.Operationname') AS Operationname,
 JSON_VALUE(jsonContent,'$.Status') AS Status,
 JSON_VALUE(jsonContent,'$.Eventcategory') AS Eventcategory,
 JSON_VALUE(jsonContent,'$.Level') AS Level,
 CAST(JSON_VALUE(jsonContent,'$.Time') AS datetimeoffset) AS Time,
 JSON_VALUE(jsonContent,'$.Subscription') AS Subscription,
 JSON_VALUE(jsonContent,'$.Eventinitiatedby') AS Eventinitiatedby,
 JSON_VALUE(jsonContent,'$.Resourcetype') AS Resourcetype,
 JSON_VALUE(jsonContent,'$.Resourcegroup') AS Resourcegroup
FROM
 OPENROWSET(
 BULK 'https://appdatalake7000.dfs.core.windows.net/data/log.json',
 FORMAT = 'CSV',
 FIELDQUOTE = '0x0b',
 FIELDTERMINATOR ='0x0b',
 ROWTERMINATOR = '0x0a'
)
 WITH (
 jsonContent varchar(MAX)
) AS [rows]

💻 DP-203 Notes by Neil Bagchi 85

Synapse SQL dedicated pools have
three different types of tables
indexing based on how the data is
stored.

Synapse dedicated pools support
sharding for all these table types.
They provide three different ways to
shard the data, as follows:

1) Clustered columnstore
2) Clustered index
3) Heap

1) Hash
2) Round-robin
3) Replicated

These methods through which a SQL dedicated pool distributes data among its
tables are also called distribution techniques. Sharding and distribution

💻 DP-203 Notes by Neil Bagchi 86

techniques are overlapping technologies that are always specified together in
SQL CREATE TABLE statements.

✅ Table Types (Sharding Patterns for Dedicated SQL
Pool i.e Horizontal Partitioning)
In a dedicated SQL pool, data is already distributed across its 60 distributions, so we
need to be careful in deciding if we need to further partition the data. For example, if
we plan to partition the data further by the months of a year, we are talking about 12
partitions x 60 distributions = 720 sub-divisions. Each of these divisions needs to have
at least 1 million rows; in other words, the table (usually a fact table) will need to have
more than 720 million rows. So, we will have to be careful to not over-partition the data
when it comes to dedicated SQL pools.

There are three different ways to distribute (shard) data among distributions :

1) Hash-distributed tables
(use this on a fact table with a hash column selected carefully)

Highest query performance for joins and aggregations on large tables

This works quicker if the query aggregation works on the hash column that we
defined.

To shard data into a hash-distributed table, a hash function is used to
deterministically assign each row to one distribution. In the table definition, one of

💻 DP-203 Notes by Neil Bagchi 87

the columns is designated as the distribution column. The hash function uses the
values in the distribution column to assign each row to a distribution deterministically.
For eg, all the rows having category id less than 100 goes to one distribution, and so
on.

When choosing the hash column, try to avoid columns having data skew as it would
lead to uneven distribution of rows across the nodes. Also, avoid selecting the date
column.

A quick way to check for data skew is to use DBCC PDW_SHOWSPACEUSED . The following SQL
code returns the number of table rows that are stored in each of the 60 distributions.
For balanced performance, the rows in your distributed table should be spread evenly
across all the distributions.

- Find data skew for a distributed table
DBCC PDW_SHOWSPACEUSED('dbo.FactInternetSales');

Consider using a hash-distributed table when:

The table size on the disk is more than 2 GB.

The table has frequent insert, update, and delete operations.

2. Replicated tables
(use it for dimension tables that are smaller in size <2 GB)

Fastest query performance for small tables
Caches a full copy of the table on each compute node. Consequently, replicating a
table removes the need to transfer data among compute nodes before a join or
aggregation but incurs additional overhead.

💻 DP-203 Notes by Neil Bagchi 88

Don’t consider this table type if the table has a frequent insert, update, and delete
operations as it will require a rebuild of the replicated table. A replicated table provides
the fastest query performance for small tables which with compression should be less
than 2GB as a starting point, static data can be larger.

3) Round-robin distributed tables
(default option during table creation)

Simplest table to create and delivers fast performance when used as a staging
table for loads

A round-robin distributed table distributes data evenly across the table but without
any further optimization. A distribution is first chosen at random and then buffers of
rows are assigned to distributions sequentially. Joins on round-robin tables require
reshuffling data, which takes additional time as it takes time to move data over from
other nodes and collate all the rows together.
Consider this option if there are no joins performed on the tables or in the case when
we don’t have a clear candidate column for the hash distributed table.

Consider using the round-robin distribution for your table in the following scenarios:

When getting started as a simple starting point since it is the default

If there is no obvious joining key

If there is no good candidate column for hash distributing the table

If the table does not share a common join key with other tables

💻 DP-203 Notes by Neil Bagchi 89

If the join is less significant than other joins in the query

When the table is a temporary staging table

Summary

Type of
Distribution

Best Fit for… Do not use when…

Replicated

–Small dimension tables in a star
schema with less then 2 GB of
storage after the compression
(Synapse does 5x compression). -
Good for small lookup tables. -Good
for dimension tables that are
frequently joined with other big
tables.

-Many write transactions are on the
table (for example insert, delete and
updates). -If you change the
datawarehouse Units frequently. -
You only use 2 -3 columns out of
many columns in your tables. -you
are indexing a replicated table.

Round Robin
(default)

–Temporary /staging Table. –No
obvious joining key candidate is
found in the table or If your data
doesn’t frequently join with data from
other tables. –When you cannot
identify a single key to distribute your
data. –Small dimension table.

–Performance is slow due to data
movement

Hash

–Large Fact Tables or historical
Transaction tables are good
candidates. –Large dimension
tables.

–The distribution key can not be
updated –A nullable column is a bad
candidate for any hash distributed
table. –Fact tables that has a default
value in a column is also not a good
candidate to create a hash
distributed table.

To balance the parallel processing, select a distribution column or set of columns that:

Has many unique values. The distribution column(s) can have duplicate values.
All rows with the same value are assigned to the same distribution. Since there
are 60 distributions, some distributions can have > 1 unique value while others
may end with zero values.

Does not have NULLs, or has only a few NULLs. For an extreme example, if all
values in the distribution column(s) are NULL, all the rows are assigned to the

💻 DP-203 Notes by Neil Bagchi 90

same distribution. As a result, query processing is skewed to one distribution, and
does not benefit from parallel processing.

Is not a date column. All data for the same date lands in the same distribution or
will cluster records by date. If several users are all filtering on the same date (such
as today's date), then only 1 of the 60 distributions do all the processing work.

✅ Indexing
In SQL-based systems, you might be required to access rows using values other than
the primary key. In such cases, the query engine needs to scan all the rows to find the
value we are looking for. Instead, if we can define a secondary index based on
frequently searched column values, we could avoid the complete table scans and
speed up the query. The secondary index tables are calculated separately from the
primary indexes of the table, but this is done by the same SQL engine.

A well-designed indexing strategy can reduce disk I/O operations and consume less
system resources therefore improving query performance, especially when using
filtering, scans, and joins in a query.

1) Clustered Columnstore Index (no secondary index)
By default for an Azure Synapse Dedicated SQL pool table, a clustered columnstore
index gets created automatically. This provides the highest level of data
compression and the best overall query performance. In a normal SQL database,
the data is stored row by row but in SQL DataWarehouse, it is stored column by
column. Clustered columnstore tables will generally outperform a clustered index or
heap tables and are usually the best choice for large tables.

However, this kind of index can’t be created with columns that are of type varchar,
nvarchar, varbinary. Also clustered columnstore index is not ideal for small tables
having less than 60 million rows and also for transient data.

💻 DP-203 Notes by Neil Bagchi 91

📌 NOTE:
Since a columnstore index scans a table by scanning column segments of
individual rowgroups, maximizing the number of rows in each rowgroup
enhances query performance. A rowgroup can have a maximum of
1,048,576 rows. However, Columnstore indexes achieve good performance
when rowgroups have at least 100,000 rows.

2) Clustered Index (allow secondary index, no compression)
Clustered index tables are row-based storage tables. They are usually faster for
queries that need row lookups with highly selective filters on the clustered index
column.

Clustered indexes may outperform clustered columnstore tables when a single row
needs to be quickly retrieved. For queries where a single or very few row lookup is
required to perform with extreme speed, consider a clustered index or nonclustered
secondary index.

The disadvantage to using a clustered index is that only queries that benefit are the
ones that use a highly selective filter on the clustered index column. To improve the
filter on other columns, a nonclustered index can be added to other columns.
However, each index that is added to a table adds both space and processing time to
loads.

3) Heap Table - Non-index option (allow secondary index, no
compression)
If we want to create a staging table in our dedicated SQL pool for loading data and
transferring it, we will have to create a Heap table. Heap tables are faster to load and
subsequent reads can be done from the cache. For small lookup tables, with less than
60 million rows, consider using HEAP or clustered index for faster query performance.

Code Example

-- Creating a heap table

CREATE TABLE [dbo].[SalesFact_staging](
 [ProductID] [int] NOT NULL,
 [SalesOrderID] [int] NOT NULL,
 [CustomerID] [int] NOT NULL,

💻 DP-203 Notes by Neil Bagchi 92

 [OrderQty] [smallint] NOT NULL,
 [UnitPrice] [money] NOT NULL,
 [OrderDate] [datetime] NULL,
 [TaxAmt] [money] NULL
)
WITH(HEAP,
DISTRIBUTION = ROUND_ROBIN --Usually used for fast loading of data
)

CREATE INDEX ProductIDIndex ON [dbo].[SalesFact_staging] (ProductID)
--Explicitly create a non-clustered index since we are not using clustered table

Type Great fit for... Watch out if...

Heap
* Staging/temporary table *
Small tables with small
lookups

* Any lookup scans the full table

Clustered index

* Tables with up to 100
million rows * Large tables
(more than 100 million
rows) with only 1-2 columns
heavily used

* Used on a replicated table * You have
complex queries involving multiple join and
Group By operations * You make updates on
the indexed columns: it takes memory

Clustered
columnstore
index (CCI)
(default)

* Large tables (more than
100 million rows)

* Used on a replicated table * You make
massive update operations on your table *
You overpartition your table: row groups do
not span across different distribution nodes
and partitions

/*If you intend to use a snowflake schema in which dimension tables are related to one a
nother, you should include the key for the parent dimension in the definition of the chi
ld dimension table. For example, the following SQL code could be used to move the geogra
phical address details from the DimCustomer table to a separate DimGeography dimension t
able:*/

CREATE TABLE dbo.DimGeography
(
 GeographyKey INT IDENTITY NOT NULL,
 GeographyAlternateKey NVARCHAR(10) NULL,
 StreetAddress NVARCHAR(100),
 City NVARCHAR(20),
 PostalCode NVARCHAR(10),
 CountryRegion NVARCHAR(20)
)
WITH
(

💻 DP-203 Notes by Neil Bagchi 93

 DISTRIBUTION = REPLICATE,
 CLUSTERED COLUMNSTORE INDEX
);

CREATE TABLE dbo.DimCustomer
(
 CustomerKey INT IDENTITY NOT NULL,
 CustomerAlternateKey NVARCHAR(15) NULL,
 GeographyKey INT NULL,
 CustomerName NVARCHAR(80) NOT NULL,
 EmailAddress NVARCHAR(50) NULL,
 Phone NVARCHAR(25) NULL
)
WITH
(
 DISTRIBUTION = REPLICATE,
 CLUSTERED COLUMNSTORE INDEX
);

/*The following code example creates a hypothetical fact table named FactSales that is r
elated to multiple dimensions through key columns (date, customer, product, and store)*/

CREATE TABLE dbo.FactSales
(
 OrderDateKey INT NOT NULL,
 CustomerKey INT NOT NULL,
 ProductKey INT NOT NULL,
 StoreKey INT NOT NULL,
 OrderNumber NVARCHAR(10) NOT NULL,
 OrderLineItem INT NOT NULL,
 OrderQuantity SMALLINT NOT NULL,
 UnitPrice DECIMAL NOT NULL,
 Discount DECIMAL NOT NULL,
 Tax DECIMAL NOT NULL,
 SalesAmount DECIMAL NOT NULL
)
WITH
(
 DISTRIBUTION = HASH(OrderNumber),
 CLUSTERED COLUMNSTORE INDEX
);

/*Staging tables are used as temporary storage for data as it's being loaded into the da
ta warehouse. The following code example creates a staging table for product data that w
ill ultimately be loaded into a dimension table:*/

CREATE TABLE dbo.StageProduct
(
 ProductID NVARCHAR(10) NOT NULL,
 ProductName NVARCHAR(200) NOT NULL,
 ProductCategory NVARCHAR(200) NOT NULL,
 Color NVARCHAR(10),
 Size NVARCHAR(10),
 ListPrice DECIMAL NOT NULL,
 Discontinued BIT NOT NULL

💻 DP-203 Notes by Neil Bagchi 94

)
WITH
(
 DISTRIBUTION = ROUND_ROBIN,
 CLUSTERED COLUMNSTORE INDEX
);

/*In some cases, if the data to be loaded is in files with an appropriate structure, it
 can be more effective to create external tables that reference the file location. This
 way, the data can be read directly from the source files instead of being loaded into t
he relational store.*/

-- External data source links to data lake location
CREATE EXTERNAL DATA SOURCE StagedFiles
WITH (
 LOCATION = 'https://mydatalake.blob.core.windows.net/data/stagedfiles/'
);
GO

-- External format specifies file format
CREATE EXTERNAL FILE FORMAT ParquetFormat
WITH (
 FORMAT_TYPE = PARQUET,
 DATA_COMPRESSION = 'org.apache.hadoop.io.compress.SnappyCodec'
);
GO

-- External table references files in external data source
CREATE EXTERNAL TABLE dbo.ExternalStageProduct
(
 ProductID NVARCHAR(10) NOT NULL,
 ProductName NVARCHAR(200) NOT NULL,
 ProductCategory NVARCHAR(200) NOT NULL,
 Color NVARCHAR(10),
 Size NVARCHAR(10),
 ListPrice DECIMAL NOT NULL,
 Discontinued BIT NOT NULL
)
WITH
(
 DATA_SOURCE = StagedFiles,
 LOCATION = 'products/*.parquet',
 FILE_FORMAT = ParquetFormat
);

✅ Table Partition
Logically splitting data into smaller manageable parts based on some column value
e.g. splitting sales data by different provinces of Canada. Normally, data is
partitioned on the date column.

💻 DP-203 Notes by Neil Bagchi 95

As a result, partitioning helps is filtering data when using the WHERE clause in
queries

Load Benefit: The primary benefit of partitioning in a dedicated SQL pool is to
improve the efficiency and performance of loading data by use of partition deletion,
switching, and merging. Partition switching can be used to quickly remove or replace a
section of a table. Where deleting the individual rows could take hours, deleting an
entire partition could take seconds.

Query Benefit: A query that applies a filter to partitioned data can limit the scan to
only the qualifying partitions. This method of filtering can avoid a full table scan and
only scan a smaller subset of data. With the introduction of clustered columnstore
indexes, the predicate elimination performance benefits are less beneficial, but in
some cases, there can be a benefit to queries.

Code Example

-- Lab - Creating a table with partitions

DROP TABLE [logdata]

CREATE TABLE [logdata]
(
 [Id] [int] NULL,
 [Correlationid] [varchar](200) NULL,
 [Operationname] [varchar](200) NULL,
 [Status] [varchar](100) NULL,
 [Eventcategory] [varchar](100) NULL,
 [Level] [varchar](100) NULL,
 [Time] [datetime] NULL,
 [Subscription] [varchar](200) NULL,
 [Eventinitiatedby] [varchar](1000) NULL,
 [Resourcetype] [varchar](1000) NULL,
 [Resourcegroup] [varchar](1000) NULL
)

COPY INTO logdata FROM 'https://datalake2000.blob.core.windows.net/data/cleaned/Lo
g.csv' WITH(FIRSTROW=2)

-- Let's first inspect our table to see the range of dates

SELECT FORMAT(Time,'yyyy-MM-dd') AS dt,COUNT(*) FROM logdata
GROUP BY FORMAT(Time,'yyyy-MM-dd')

/* Output will be partitioned by the date column For eg:
 dt (No column name) ...
 2021-01-01 501 ...
 2021-01-02 45 ...

💻 DP-203 Notes by Neil Bagchi 96

.. 2021-01-31 240 ...

.. 2021-12-01 11 ... and so on
We can see that we don't have an even distribution of data across the dates*/

-- Let's drop the existing table if it exists
DROP TABLE logdata

-- Let's create a new table with partitions
CREATE TABLE [logdata]
(
 [Id] [int] NULL,
 [Correlationid] [varchar](200) NULL,
 [Operationname] [varchar](200) NULL,
 [Status] [varchar](100) NULL,
 [Eventcategory] [varchar](100) NULL,
 [Level] [varchar](100) NULL,
 [Time] [datetime] NULL,
 [Subscription] [varchar](200) NULL,
 [Eventinitiatedby] [varchar](1000) NULL,
 [Resourcetype] [varchar](1000) NULL,
 [Resourcegroup] [varchar](1000) NULL
)
WITH
(
PARTITION ([Time] RANGE RIGHT FOR VALUES
 ('2021-04-01','2021-05-01','2021-06-01')
)
)
/* First partition is any data <1st April,
 2nd partition between 1st Apr and 1st may,
 3rd partition between 1st May and 1st June
 4th any date >= 1st June */

-- Copy data into the table
COPY INTO logdata FROM 'https://datalake2000.blob.core.windows.net/data/cleaned/Lo
g.csv' WITH (FIRSTROW=2)

-- View the partitions
SELECT QUOTENAME(s.[name])+'.'+QUOTENAME(t.[name]) as Table_name
, i.[name] as Index_name
, p.partition_number as Partition_nmbr
, p.[rows] as Row_count
, p.[data_compression_desc] as Data_Compression_desc
FROM sys.partitions p
JOIN sys.tables t ON p.[object_id] = t.[object_id]
JOIN sys.schemas s ON t.[schema_id] = s.[schema_id]
JOIN sys.indexes i ON p.[object_id] = i.[object_Id]
 AND p.[index_Id] = i.[index_Id]
WHERE t.[name] = 'logdata'

💻 DP-203 Notes by Neil Bagchi 97

/* The Output is:
 Table_name ... Partition_nmbr Row_count Data_compression_desc
 [dbo].[logdata] ... 1 250 COLUMNSTORE
 [dbo].[logdata] ... 2 250 COLUMNSTORE
 [dbo].[logdata] ... 3 250 COLUMNSTORE
 [dbo].[logdata] ... 4 250 COLUMNSTORE */

Partition Switching

-- Lab - Switching partitions

-- Create a new table with partitions
-- Switch partitions
-- This can be done with the Alter command.
-- But the alter command will not work if the table has a clustered column store in
dex
-- When using the CREATE TABLE AS, we need to mention a distribution type

CREATE TABLE [logdata_new]
WITH
(
DISTRIBUTION = ROUND_ROBIN, --Default option
PARTITION ([Time] RANGE RIGHT FOR VALUES
 ('2021-05-01','2021-06-01')

))
AS
SELECT *
FROM logdata
WHERE 1=2 --Since its always false, it will just copy the schema of the logdata to
 the logadata_new

-- Switch the partitions and then see the data

ALTER TABLE [logdata] SWITCH PARTITION 2 TO [logdata_new] PARTITION 1;
--Data from portion 2 is going to be moved only and the previous logdata table will
be left with partitions 1,3,4

SELECT count(*) FROM [logdata_new]
SELECT FORMAT(Time,'yyyy-MM-dd') AS dt,COUNT(*) FROM logdata_new
GROUP BY FORMAT(Time,'yyyy-MM-dd')

✅ Slowly Changing Dimensions (SCD)

💻 DP-203 Notes by Neil Bagchi 98

Slowly changing dimensions (SCD) are tables in a
dimensional model that handle changes to dimension values
over time and not on a set schedule.

Over time, it is possible that certain product name changes or maybe a customer
changes phone number. This will lead to the case where we will have to change the
dimension table to reflect these changes. There are various strategies to tackle the
different cases.

• Type 1

A Type 1 SCD always reflects the latest values, and when
changes in source data are detected, the dimension table
data is overwritten

E.g. When a customer's email address or phone number changes, the dimension
table updates the customer row with the new values.

Link to an example showing the detailed implementation steps

• Type 2 (important):

A Type 2 SCD supports the versioning of dimension
members. It includes columns that define the date range
validity of the version (for example, StartDate and EndDate)
and possibly a flag column (for example, IsCurrent) to
easily filter by current dimension members.

💻 DP-203 Notes by Neil Bagchi 99

Current versions may define an empty end date (or 12/31/9999), which indicates
that the row is the current version. The table must also define a surrogate key
because the business key (in this instance, employee ID) won't be unique.

📌 NOTE: Surrogate keys are secondary row identification keys. They are
added in all SCD2 cases because the primary identification key will not
be unique anymore with newly added rows.

Code to apply type 1 and 2 logic

/*Logic to implement Type 1 and Type 2 updates can be complex, and there are var
ious techniques you can use. For example, you could use a combination of UPDATE
 and INSERT statements as shown in the following code example:*/

-- Insert new customers
INSERT INTO dbo.DimCustomer
SELECT stg.CustomerNo,
 stg.CustomerName,
 stg.EmailAddress,
 stg.Phone,
 stg.StreetAddress
FROM dbo.StageCustomers AS stg
WHERE NOT EXISTS
 (SELECT * FROM dbo.DimCustomer AS dim
 WHERE dim.CustomerAltKey = stg.CustomerNo);

-- Type 1 updates (name, email, phone)
UPDATE dbo.DimCustomer
SET CustomerName = stg.CustomerName,
 EmailAddress = stg.EmailAddress,
 Phone = stg.Phone
FROM dbo.StageCustomers AS stg
WHERE dbo.DimCustomer.CustomerAltKey = stg.CustomerNo;

💻 DP-203 Notes by Neil Bagchi 100

-- Type 2 updates (geographic address)
INSERT INTO dbo.DimCustomer
SELECT stg.CustomerNo AS CustomerAltKey,
 stg.CustomerName,
 stg.EmailAddress,
 stg.Phone,
 stg.StreetAddress,
 stg.City,
 stg.PostalCode,
 stg.CountryRegion
FROM dbo.StageCustomers AS stg
JOIN dbo.DimCustomer AS dim
ON stg.CustomerNo = dim.CustomerAltKey
AND stg.StreetAddress <> dim.StreetAddress;

/*As an alternative to using multiple INSERT and UPDATE statement, you can use a
single MERGE statement to perform an "upsert" operation to insert new records an
d update existing ones, as shown in the following example, which loads new produ
ct records and applies type 1 updates to existing products*/

MERGE dbo.DimProduct AS tgt
 USING (SELECT * FROM dbo.StageProducts) AS src
 ON src.ProductID = tgt.ProductBusinessKey
WHEN MATCHED THEN
 UPDATE SET
 tgt.ProductName = src.ProductName,
 tgt.ProductCategory = src.ProductCategory
 tgt.Color = src.Color,
 tgt.Size = src.Size,
 tgt.ListPrice = src.ListPrice,
 tgt.Discontinued = src.Discontinued
WHEN NOT MATCHED THEN
 INSERT VALUES
 (src.ProductID,
 src.ProductName,
 src.ProductCategory,
 src.Color,
 src.Size,
 src.ListPrice,
 src.Discontinued);

/*Another way to load a combination of new and updated data into a dimension tab
le is to use a CREATE TABLE AS (CTAS) statement to create a new table that conta
ins the existing rows from the dimension table and the new and updated records f
rom the staging table. After creating the new table, you can delete or rename th
e current dimension table, and rename the new table to replace it.*/

CREATE TABLE dbo.DimProductUpsert
WITH
(
 DISTRIBUTION = REPLICATE,
 CLUSTERED COLUMNSTORE INDEX
)
AS
-- New or updated rows

💻 DP-203 Notes by Neil Bagchi 101

SELECT stg.ProductID AS ProductBusinessKey,
 stg.ProductName,
 stg.ProductCategory,
 stg.Color,
 stg.Size,
 stg.ListPrice,
 stg.Discontinued
FROM dbo.StageProduct AS stg
UNION ALL
-- Existing rows
SELECT dim.ProductBusinessKey,
 dim.ProductName,
 dim.ProductCategory,
 dim.Color,
 dim.Size,
 dim.ListPrice,
 dim.Discontinued
FROM dbo.DimProduct AS dim
WHERE NOT EXISTS
(SELECT *
 FROM dbo.StageProduct AS stg
 WHERE stg.ProductId = dim.ProductBusinessKey
);

RENAME OBJECT dbo.DimProduct TO DimProductArchive;
RENAME OBJECT dbo.DimProductUpsert TO DimProduct;

• Type 3:

A Type 3 SCD supports storing two versions of a
dimension member as separate columns.

Here instead of having multiple rows to signify changes, we have multiple columns.
We do have an effective/modified date column to show when the change took
place.

💻 DP-203 Notes by Neil Bagchi 102

• Type 6:

A Type 6 SCD combines Type 1, 2, and 3. In Type 6 design
we also store the current value in all versions of that entity
so you can easily report the current value or the historical
value.

✅ Window Functions (also used in stream analytics)
A window function enables you to perform a mathematical equation on a set of data
that is defined within a window. The mathematical equation is typically an aggregate
function; however, instead of applying the aggregate function to all the rows in a table,
it is applied to a set of rows that are defined by the window function, and then the
aggregate is applied to it.

A suite of functions that are helpful and easier compared to complex queries since
they reduce the need for intermediate tables to store temporary data. These functions
are used only when we have a requirement to work with a specific window/time period.

For e.g.
Running Total of Revenue for each Week,
Top N products for a week’s sale,
Moving Averages over the last 3 rows

When using the windowing function with SQL pools, we will use the OVER clause.
This clause determines the partitioning and ordering of a rowset before the window
function is applied.

Code Example

💻 DP-203 Notes by Neil Bagchi 103

-- Lab - Windowing Functions

SELECT
ROW_NUMBER() OVER(
 PARTITION BY [ProductID]
 ORDER BY [OrderQty]) AS "Row Number"
,[ProductID]
,[CustomerID]
,[OrderQty]
,[UnitPrice]
FROM [dbo].[SalesFact]
ORDER BY [ProductID]

/* Output will be partitioned by the Product Id column For eg:
 Row num ProdId
 1 700 ...
 2 700 ...
.. 12 700 ...
 1 701 ... and so on*/

SELECT
ROW_NUMBER() OVER(
 PARTITION BY [ProductID]
 ORDER BY [OrderQty]) AS "Row Number"
,[ProductID]
,[CustomerID]
,[OrderQty]
,SUM([OrderQty]) OVER(
 PARTITION BY [ProductID]) AS TotalOrderQty
,[UnitPrice]
FROM [dbo].[SalesFact]
ORDER BY [ProductID]

#Running Sum - Order by day
FROM groceries
SELECT id
,revenue
, day
,SUM(revenue) over (order by day) as running_total;

✅ Surrogate Keys
Generally, data for dimension tables can come from multiple sources and if the
primary key column for these tables is the same then we won’t have a way to
distinguish between the different rows. Thus we would want to have surrogate keys

💻 DP-203 Notes by Neil Bagchi 104

to distinguish the rows (as simple as a new index column). The surrogate key is also
referred to as a non-business key

Code Example

-- Lab - Surrogate keys for dimension tables

-- First let's ensure we have the tables defined in the SQL pool
-- Let's do this for one dimension table

-- First drop the table if you have it in place

DROP TABLE [dbo].[DimProduct]

CREATE TABLE [dbo].[DimProduct](
 [ProductSK] [int] IDENTITY(1,1) NOT NULL, --destination table surrogate key colum
n
--the values will be generated automatically but not necessarily in incrementing fa
shion
 [ProductID] [int] NOT NULL,
 [ProductModelID] [int] NOT NULL,
 [ProductSubcategoryID] [int] NOT NULL,
 [ProductName] varchar(50) NOT NULL,
 [SafetyStockLevel] [smallint] NOT NULL,
 [ProductModelName] varchar(50) NULL,
 [ProductSubCategoryName] varchar(50) NULL
)

✅ Dynamic data masking

Dynamic data masking helps prevent unauthorized access to
sensitive data by enabling customers to designate how much of
the sensitive data to reveal with minimal impact on the application
layer. It's a policy-based security feature that hides the sensitive
data in the result set of a query over designated database fields,
while the data in the database is not changed.

No change in the physical layer
• Data in the database is not changed
• Not the same as data encryption

💻 DP-203 Notes by Neil Bagchi 105

No additional development effort is needed at the application level

Security: Should not be used as a primary security layer
• DDM should not be used as an isolated measure to fully secure sensitive data
• ad-hoc query permissions can apply techniques to gain access to the actual
data.

Other considerations
• Masked columns can be updated if the user has permission
• Export masked from source data results in masked data in the target table

Function Description Examples

Default

Full masking according to the data types of the
designated fields. For string data types, use
XXXX or fewer Xs if the size of the field is fewer
than 4 characters. For numeric data types use a
zero value. For date and time data types use
01.01.1900 00:00:00.0000000. For binary data
types use a single byte of ASCII value 0.

Example column
definition syntax: Phone#
varchar(12) MASKED WITH
(FUNCTION = 'default()')
NULL

Email
Masking method that exposes the first letter of
an email address and the constant suffix ".com",
in the form of an email address aXXX@XXXX.com .

Example definition
syntax: Email varchar(100)
MASKED WITH (FUNCTION =
'email()') NULL

💻 DP-203 Notes by Neil Bagchi 106

Function Description Examples

Random
A random masking function for use on any
numeric type to mask the original value with a
random value within a specified range.

Example definition
syntax: Account_Number
bigint MASKED WITH
(FUNCTION = 'random([start
range], [end range])')

Custom String

Masking method that exposes the first and last
letters and adds a custom padding string in the
middle. prefix,[padding],suffix Note: If the
original value is too short to complete the entire
mask, part of the prefix or suffix won't be
exposed.

Example definition
syntax: FirstName
varchar(100) MASKED WITH
(FUNCTION =
'partial(prefix,
[padding],suffix)') NULL

Code Example

-- Azure Example
--DROP TABLE TestDDM
Create table TestDDM
 (ID Int,
 PersonName varchar (100),
 EmailAddress varchar(120),
 CreditCardNumber varchar(19),
 SocialSecurityNumber varchar(11)
)

INSERT INTO TestDDM Values (1, 'Anoop Kumar','abcdefgh@hotmail.com','1234-5678-432
1-8765','123-45-6789')
INSERT INTO TestDDM Values (1, 'Rahul Gupta','amitguptaabcdefg@hotmail.com','8765-
1234-5678-4321','231-45-6787')
INSERT INTO TestDDM Values (1, 'Amit Goel','amitgoelabcdefgh@hotmail.com','4321-12
34-5678-4321','321-45-6700')

SELECT * FROM TestDDM

/* After this we can go into Azure -> Security -> Dynamic Data masking where we can
provide all the functions. Similar task can be done from SQL query as well */

-- SQL Server Example

CREATE TABLE Membership
 (MemberID int IDENTITY PRIMARY KEY,
 FirstName varchar(100) MASKED WITH (FUNCTION = 'partial(1,"XXXXXXX",0)') NULL,
 LastName varchar(100) NOT NULL,
 Phone varchar(12) MASKED WITH (FUNCTION = 'default()') NULL,
 Email varchar(100) MASKED WITH (FUNCTION = 'email()') NULL);

💻 DP-203 Notes by Neil Bagchi 107

✅ Workload management

Workload management is the process of allowing
administrators to control certain aspects of the warehouse to
perform at optimal levels when executing tasks such as
loading and transforming data.

Dedicated SQL pool workload management in Azure Synapse consists of three high-
level concepts:

Workload Classification

Workload management classification allows workload policies to be applied to
requests through assigning resource classes and importance.
The simplest and most common classification is load and query. For eg, having a
workload policy for load activity assigning it a higher resource class with more

💻 DP-203 Notes by Neil Bagchi 108

resources and another workload policy for querying, providing it lower importance
compared to load activities.

Workload Importance

Workload importance influences the order in which a request gets access to
resources. On a busy system, a request with higher importance has first access to
resources. There are five levels of importance: low, below_normal, normal,
above_normal, and high. Requests that don't set importance are assigned the
default level of normal.

Workload Isolation

Workload isolation reserves resources for a workload group. Resources reserved
in a workload group are held exclusively for that workload group to ensure
execution. Workload groups give you the ability to reserve or cap the amount of
resources a set of requests can consume. Finally, workload groups are a
mechanism to apply rules, such as query timeout, to requests.

/* We can create multiple workload groups in order to provision compute resources such t
hat two different tasks such that an user loading data doesn't use the full resource cap
acity when an user already performing some analysis job*/

CREATE WORKLOAD GROUP DataLoads --Workload Isolation
WITH (
 MIN_PERCENTAGE_RESOURCE = 80
 ,CAP_PERCENTAGE_RESOURCE = 100
 ,REQUEST_MIN_RESOURCE_GRANT_PERCENT = 4 -- factor of 80 (guaranteed more than 20 con
currencies)
);
--[Max Concurrency] = [CAP_PERCENTAGE_RESOURCE] / [REQUEST_MIN_RESOURCE_GRANT_PERCENT]

CREATE WORKLOAD CLASSIFIER [ELTLogin] --Workload Classification
WITH (
 WORKLOAD_GROUP = 'DataLoads'
 ,MEMBERNAME = 'user_load'
 ,IMPORTANCE = High -- Workload Importance
);

✅ Materialized Views
Views are logical projections of data from multiple tables. A standard view computes
its data each time when the view is used. There's no data stored on disk. A
materialized view pre-computes, stores, and maintains its data in a dedicated

💻 DP-203 Notes by Neil Bagchi 109

SQL pool just like a table. They are not supported by default in serverless SQL
pools. Recomputation isn't needed each time a materialized view is used. That's why
queries that use all or a subset of the data in materialized views can gain faster
performance.

Comparison View Materialized View

View definition
Stored in Azure
data warehouse.

Stored in Azure data warehouse.

View content
Generated each
time when the
view is used.

Pre-processed and stored in Azure data warehouse
during view creation. Updated as data is added to
the underlying tables.

Data refresh Always updated Always updated

Speed to retrieve
view data from
complex queries

Slow Fast

Extra storage No Yes

Syntax CREATE VIEW CREATE MATERIALIZED VIEW AS SELECT

Materialized views results in increased performance since the data within the view can
be fetched without having to resolve the underlying query to base tables. You can also
further filter and supplement other queries as if it is a table also. In addition, you also
can define a different table distribution within the materialized view definition that is
different from the table on which it is based. As the data in the underlying base tables
change, the data in the materialized view will automatically update without user
interaction.

There are several restrictions that you must be aware of before defining a materialized
view:

The SELECT list in the materialized view definition needs to meet at least one of
these two criteria:

The SELECT list contains an aggregate function.

GROUP BY is used in the Materialized view definition and all columns in
GROUP BY are included in the SELECT list. Up to 32 columns can be used in
the GROUP BY clause.

Supported aggregations include MAX, MIN, AVG, COUNT, COUNT_BIG, SUM,
VAR, STDEV.

💻 DP-203 Notes by Neil Bagchi 110

Only the hash and round_robin table distribution is supported in the definition.

Only CLUSTERED COLUMNSTORE INDEX is supported by materialized view.

CREATE MATERIALIZED VIEW [schema_name.] materialized_view_name
 WITH (
 <distribution_option>
)
 AS <select_statement>
[;]

<distribution_option> ::=
 {
 DISTRIBUTION = HASH (distribution_column_name)
 | DISTRIBUTION = HASH ([distribution_column_name [, ...n]])
 | DISTRIBUTION = ROUND_ROBIN
 }

<select_statement> ::=
 SELECT select_criteria

--Example
--When MIN/MAX aggregates are used in the SELECT list of materialized view definition, F
OR_APPEND is required

CREATE MATERIALIZED VIEW mv_test2
WITH (distribution = hash(i_category_id), FOR_APPEND)
AS
SELECT MAX(i.i_rec_start_date) as max_i_rec_start_date, MIN(i.i_rec_end_date) as min_i_r
ec_end_date, i.i_item_sk, i.i_item_id, i.i_category_id
FROM syntheticworkload.item i
GROUP BY i.i_item_sk, i.i_item_id, i.i_category_id

✅ Result set Caching
Caching refers to storing intermediate data in faster storage layers to speed up
queries. When result set caching is enabled, a dedicated SQL pool automatically
caches query results in the user database for repetitive use. Thus, enable resultset
caching when you expect results from queries to return the same values.

This option stores a copy of the result set on the control node so that queries do not
need to pull data from the storage subsystem or compute nodes. The capacity for the
resultset cache is 1 TB and the data within the resultset cache is expired and purged
after 48 hours of not being accessed.

💻 DP-203 Notes by Neil Bagchi 111

Azure Synapse SQL automatically caches query results in the user database for
repetitive use. Resultset caching allows subsequent query executions to get results
directly from the persisted cache so recomputation is not needed. Result set caching
improves query performance and reduces compute resource usage.

To enable result set caching, run this command when connecting to the MASTER
database.

ALTER DATABASE [database_name]
SET RESULT_SET_CACHING ON;

✅ Row and Column Level Security
Column-level security simplifies the design and coding of security in your
application, allowing you to restrict column access to protect sensitive data. For
example, ensuring those specific users can access only certain columns of a table
pertinent to their department. The way to implement column-level security is by using
the GRANT T-SQL statement.

GRANT <permission> [,...n] ON
 [OBJECT ::][schema_name]. object_name [(column [,...n])] // specifying the
column access
 TO <database_principal> [,...n]

Row-level security (RLS) can help you to create a group membership or execution
context in order to control not just columns in a database table, but actually, the rows.
The way to implement RLS is by using the CREATE SECURITY POLICY statement. For
reading more.

✅ Transparent Data Encryption

💻 DP-203 Notes by Neil Bagchi 112

Transparent data encryption (TDE) helps protect Azure Synapse Analytics against the
threat of malicious offline activity by encrypting data at rest. It performs real-time
encryption and decryption of the database, associated backups, and transaction log
files at rest without requiring changes to the application. It is enabled by default.

Managed identities provide Azure services with an automatically managed identity in
Azure Active Directory. You can use the Managed Identity capability to authenticate to
any service that supports Azure Active Directory authentication.

✅ Statistics to improve query performance
When queries are submitted, a dedicated SQL pool query optimizer tries to determine
which access paths to the data will result in the least amount of effort to retrieve the
data required to resolve the query. It is a cost-based optimizer that compares the cost
of various query plans and then chooses the plan with the lowest cost. After loading
data into a dedicated SQL pool, collecting statistics on your data is one of the most
important things you can do for query optimization.

It tracks cardinality and range density to determine which data access paths
return the fewest rows for speed.

For example, if the optimizer estimates that the date your query is filtering on will
return one row, it will choose one plan. If it estimates that the selected date will return
1 million rows, it will return a different plan.

✅ Scale Compute Resources
In SQL pools, the unit of scale is an abstraction of compute power that is known as a
data warehouse unit. Compute is separate from storage, which enables you to scale
compute independently of the data in your system. This means you can scale up and
scale down the compute power to meet your needs.

You can scale a Synapse SQL pool either through the Azure portal, Azure Synapse
Studio or programmatically using TSQL or PowerShell.

💻 DP-203 Notes by Neil Bagchi 113

✅ DATA EXPLORER (optional)
If you want to learn more about this, click here.

✅

💻 DP-203 Notes by Neil Bagchi 114

✅ APACHE SPARK (Important)
Apache Spark processes large amounts of data in-memory, which boosts the
performance of analyzing big data more effectively, and this capability is available
within Azure Synapse Analytics referred to as Spark pools.

Spark pool clusters are groups of computers that are treated as a single computer and
handle the execution of commands issued from notebooks. The clusters allow the
processing of data to be parallelized across many computers to improve scale and
performance. It consists of a Spark Driver and Worker nodes. Spark pools in Azure
Synapse can use Azure Data Lake Storage Generation 2 as well as BLOB
storage.

The primary use case for Apache Spark for Azure Synapse Analytics is to process big
data workloads that cannot be handled by Azure Synapse SQL, and where you don’t
have an existing Apache Spark implementation.

There are two ways within Synapse to use Spark:

Spark Notebooks for doing Data Science and Engineering use Scala, PySpark,
C#, and SparkSQL

Spark job definitions for running batch Spark jobs using jar files.

Link to an example showing the detailed implementation steps

Indexing
In Azure, we have technologies that can perform indexing on huge volumes of data.
These indexes can then be used by analytical engines such as Spark to speed up the
queries. One such technology that Azure offers is called Hyperspace.

Hyperspace lets us create indexes on input datasets such as Parquet, CSV, and so
on, which can be used for query optimization. The Hyperspace indexing needs to be
run separately to create an initial index. After that, it can be incrementally updated for
the new data. Once we have the Hyperspace index, any Spark query can leverage the
index, similar to how we use indexes in SQL.

✅ Delta lake
Delta Lake is an open-source storage layer for Spark that enables relational
database capabilities for batch and streaming data. By using Delta Lake, you can
implement a data lakehouse architecture in Spark to support SQL_based data

💻 DP-203 Notes by Neil Bagchi 115

manipulation semantics with support for transactions and schema enforcement. The
result is an analytical data store that offers many of the advantages of a relational
database system with the flexibility of data file stored in a data lake.

The benefits of using Delta Lake include:

Relational tables that support querying and data modification. With Delta
Lake, you can store data in tables that support CRUD (create, read, update, and
delete) operations. In other words, you can select, insert, update, and delete rows
of data in the same way you would in a relational database system.

Support for ACID transactions. Relational databases are designed to support
transactional data modifications that provide atomicity (transactions complete as a
single unit of work), consistency (transactions leave the database in a consistent
state), isolation (in-process transactions can't interfere with one another),
and durability (when a transaction completes, the changes it made are persisted).
Delta Lake brings this same transactional support to Spark by implementing a
transaction log and enforcing serializable isolation for concurrent operations.

Data versioning and time travel. Because all transactions are logged in the
transaction log, you can track multiple versions of each table row, and even use
the time travel feature to retrieve a previous version of a row in a query.

Support for batch and streaming data. While most relational databases include
tables that store static data, Spark includes native support for streaming data
through the Spark Structured Streaming API. Delta Lake tables can be used as
both sinks (destinations) and sources for streaming data.

Delta Lake for Streaming Data

✅ Integrate SQL and Apache Spark Pools
The Apache Spark to Synapse SQL connector is designed to efficiently transfer data
between serverless Apache Spark pools and dedicated SQL pools in Azure Synapse.
At the moment, the Azure Synapse Apache Spark to Synapse SQL connector works
on dedicated SQL pools only, it doesn't work with serverless SQL pools.

The JDBC API opens the connection, filters, and applies projections, and Apache
Spark reads the data serially. Given that two distributed systems such as Apache

💻 DP-203 Notes by Neil Bagchi 116

Spark and SQL pools are being used, using the JDBC API becomes a bottleneck with
a serial transfer of data.

Therefore, a new approach is to use both JDBC and PolyBase. First, the JDBC opens
a connection, issues Create External Tables As Select (CETAS) statements, and
sends filters and projections. The filters and projections are then applied to the data
warehouse and exported in parallel using PolyBase. Apache Spark reads the data in
parallel based on the user-provisioned workspace and the default data lake storage.

As a result, you can use the Azure Synapse Apache Spark Pool to Synapse SQL
connector to transfer data between a Data Lake store via Apache Spark and
dedicated SQL Pools efficiently.

When you deploy an Azure Synapse Apache Spark cluster, the Azure Data Lake
Gen2 capability enables you to store Apache Spark SQL Tables within it. If you
use Apache Spark SQL tables, these tables can be queried from a SQL-based
Transact-SQL language without needing to use commands like CREATE
EXTERNAL TABLE. Within Azure Synapse Analytics, these queries integrate
natively with data files that are stored in an Apache Parquet format.

The integration can be helpful in use cases where you perform an ETL process
predominately using SQL but need to call on the computation power of Apache Spark

💻 DP-203 Notes by Neil Bagchi 117

to perform a portion of the extract, transform, and load (ETL) process as it is more
efficient.

Authentication
The authentication between the two systems is made seamless in Azure Synapse
Analytics. The Token Service connects with Azure Active Directory to obtain the
security tokens to be used when accessing the storage account or the data
warehouse in the dedicated SQL pool.

For this reason, there's no need to create credentials or specify them in the connector
API if Azure AD-Auth is configured at the storage account and the dedicated SQL
pool. If not, SQL Authentication can be specified. The only constraint is that this
connector only works in Scala.

Read more

Monitor and Manage workloads

✅ Scale Compute Resources
Apache Spark pools for Azure Synapse Analytics uses an Autoscale feature that
automatically scales the number of nodes in a cluster instance up and down. During
the creation of a new Spark pool, a minimum and maximum number of nodes can be
set when Autoscale is selected. Autoscale then monitors the resource requirements
of the load and scales the number of nodes up or down. To enable the Autoscale
feature, complete the following steps as part of the normal pool creation process:

1. On the Basics tab, select the Enable autoscale checkbox.

2. Enter the desired values for the following properties:

Min number of nodes.

Max number of nodes.

The initial number of nodes will be the minimum. This value defines the initial size of
the instance when it's created. The minimum number of nodes can't be fewer than
three.

You can also modify this in the Azure portal, you can click on the auto-scale
settings icon

💻 DP-203 Notes by Neil Bagchi 118

✅ SYNAPSE LINK
Hybrid Transactional and Analytical Processing enables businesses to perform
analytics over a database system that is seen to provide transactional capabilities
without impacting the performance of the system. This enables organizations to use a
database to fulfill both transactional and analytical needs to support near real-time
analysis of operational data to make decisions about the information that is being
analyzed.

In an HTAP solution, the transactional data is replicated automatically, with low
latency, to an analytical store, where it can be queried without impacting the
performance of the transactional system.

Link to an example showing the detailed implementation steps

Synapse Link for SQL - Learn more here or here.

✅ PIPELINE AND DATA FLOW (Important)
Just like Azure Data Factory, Azure Synapse can have one or more pipelines. A
pipeline is a logical grouping of activities that together perform a task. For example, a
pipeline could contain a set of activities that ingest and clean log data, and then kick
off a mapping data flow to analyze the log data. The pipeline allows you to manage
the activities as a set instead of each one individually. You deploy and schedule the
pipeline instead of the activities independently.

Choose the node size
and the number of

nodes

💻 DP-203 Notes by Neil Bagchi 119

Azure Synapse Analytics just
like ADF has the same three
groupings of activities: data
movement activities, data
transformation activities, and
control activities. For revising
the concepts from ADF, click
here.

Now, a dataset is a named view of data that simply points or references the data you
want to use in your activities as inputs and outputs. Before you create a dataset, you
must create a linked service to link your data store to the Data Factory or Synapse
Workspace. Linked services are like connection strings, which define the connection
information needed for the service to connect to external resources. Think of it this
way; the dataset represents the structure of the data within the linked data stores, and
the linked service defines the connection to the data source. For example, to copy
data from Blob storage to a SQL Database, you create two linked services: Azure
Storage and Azure SQL Database. Then, create two datasets: an Azure Blob dataset
(which refers to the Azure Storage linked service) and an Azure SQL Table dataset
(which refers to the Azure SQL Database linked service).

You can choose an existing linked
service of the type you selected for the
dataset, or create a new one if one isn’t
already defined.

💻 DP-203 Notes by Neil Bagchi 120

In Data Flow, datasets are used in source and sink transformations. The datasets
define the basic data schemas. If your data has no schema, you can use schema drift
for your source and sink.

Pipeline runs are typically instantiated by passing arguments to parameters that you
define in the pipeline. You can execute a pipeline either manually or by using
a trigger. We have the same triggers as in ADF: scheduled, tumbling window, and
event-based.

Finally, The Integration Runtime (IR) provides the compute infrastructure for
completing a pipeline. We have the same three types of IR: Azure, Self-hosted, and
Azure-SSIS.

✅ So what are the differences between ADF and ASA ??

Category Feature Azure Data Factory
Azure Synapse
Analytics

Integration
Runtime

Using SSIS and SSIS
Integration Runtime

✓ ✓Public preview

Support for Cross-region
Integration Runtime (Data
Flows)

✓ ✗

Integration Runtime Sharing
✓Can be shared
across different data
factories

✗

Pipelines
Activities

SSIS Package Activity ✓ ✓Public preview

Support for Power Query
Activity (Wrangling Data
Flow)

✓ ✗

Support for global
parameters

✓ ✗

GIT Repository
Integration

GIT Integration ✓ ✓

Monitoring
Monitoring of Spark Jobs for
Data Flow

✗

✓Leverage the
Synapse Spark
pools

✅

💻 DP-203 Notes by Neil Bagchi 121

✅ Data Flows
Since it has already been covered in ADF, please refer there using this link.

✅ Loading Methods
Analytical systems are constantly balanced between loading and querying workloads.
One of the main design goals in loading data is to manage or minimize the impact on
analytical workloads while loading the data with the highest throughput possible.

Singleton updates: Singleton or smaller transaction batch loads should be grouped
into larger batches to optimize the Synapse SQL Pools processing capabilities. One
way to solve this issue is to develop one process that writes the outputs of an INSERT
statement to a file and then another process to periodically load this file to take
advantage of the parallelism.

Single Client loading method
SSIS

Azure Data Factory

Can add some parallel capabilities but
are bottlenecked at the control node

Parallel Reader loading
method

PolyBase

Reads from Azure blob and loads to
Azure Synapse Analytics, SQL Server
etc

Bypasses control node and loads
directly into Compute nodes

💻 DP-203 Notes by Neil Bagchi 122

📌 NOTE:
While dedicated SQL pools support many loading methods, including
popular SQL Server options such as BCP and the SqlBulkCopy API, the
fastest and most scalable way to load data is through PolyBase
external tables and the COPY INTO <table> FROM command.

If you are using PolyBase, you need to define external tables in your
dedicated SQL pool before loading. PolyBase uses external tables to define
and access the data in Azure Storage. An external table is similar to a
database view. The external table contains the table schema and points to
data that is stored outside the dedicated SQL pool.

PolyBase can't load rows that have more than 1MB of data. When you put
data into the text files in Azure Blob storage or Azure Data Lake Store, they
must have fewer than 1,000,000 bytes of data. This byte limitation is true
regardless of the table schema.

✅ 1) Load data to External Tables/ Serverless SQL
Pool
The data lies in other data sources such as Hadoop, Azure Blob storage, or Azure
Data lake Storage, whereas only the table structure is present in Azure Synapse.
External tables are accessed using a feature called PolyBase

PolyBase is a tool that enables services such as SQL Server and Synapse Dedicated
SQL pool to copy and query data directly from external locations. PolyBase is
integrated into T-SQL, so every time we use a COPY INTO <table> FROM command to
read data from an external storage location, PolyBase kicks in. PolyBase is one of the
fastest and most scalable ways to copy data.

In order to access external tables:

Step 1→ Authorization to use the Data Lake storage account

Step 2→ Define the format of the external file that we will work with e.g. CSV, parquet,
etc

💻 DP-203 Notes by Neil Bagchi 123

Step 3→ Create and access the external table

Code Examples

-- Lab - Using External tables (Serverless SQL Pool)

/* PolyBase 6 steps Process

1. CREATE DATABASE ENCRYPTION KEY
2. CREATE DATABASE-SCOPED CREDENTIAL
3. CREATE AN EXTERNAL DATA SOURCE
4. CREATE AN EXTERNAL FILE FORMAT
5. CREATE AN EXTERNAL TABLE
6. CREATE A TABLE AS */

-- First we need to create a database in the serverless pool
CREATE DATABASE [appdb]

/* Ensure to switch the context to the new database (appdb) first */

/* 1. To access your Data Lake Storage account, you will need to create a
Database Master Key to encrypt your credential secret. You then create a Database S
coped Credential to store your secret. The Master Key is required to encrypt the cr
edential secret (Shared Access Signature) in the next step. */

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'P@ssw0rd@123';

/* 2.(for blob storage key authentication): Create a database scoped credential
 IDENTITY: Provide any string, it is not used for authentication to Azure storag
e.
 SECRET: Provide your Azure storage account key (SAS).
*/
-- Here we are using the Shared Access Signature to authorize the use of the Azure
 Data Lake Storage account

CREATE DATABASE SCOPED CREDENTIAL SasToken
WITH IDENTITY='SHARED ACCESS SIGNATURE'
, SECRET = 'sv=2020-02-10&ss=b&srt=sco&sp=rl&se=2021-06-26T14:34:27Z&st=2021-06-26T
06:34:27Z&spr=https&sig=7nxID0JFYuddBCnNTsPoeyY%2BRZokkcgdSUSsrfmAkRc%3D';
--this is the SAS token that will be generated from the Data Lake based on options

/* 3 (for blob): Create an external data source
 TYPE: HADOOP - PolyBase uses Hadoop APIs to access data in Azure Data Lake Stora
ge.
 LOCATION: Provide Data Lake Storage blob account name and URI
 CREDENTIAL: Provide the credential created in the previous step.
*/

CREATE EXTERNAL DATA SOURCE log_data

💻 DP-203 Notes by Neil Bagchi 124

WITH (LOCATION = 'https://storageneil.dfs.core.windows.net/data',
 CREDENTIAL = SasToken
)

/* 4: Create an external file format
 FIELD_TERMINATOR: Marks the end of each field (column) in a delimited text file
 STRING_DELIMITER: Specifies the field terminator for data of type string in the
 text-delimited file.
 DATE_FORMAT: Specifies a custom format for all date and time data that might app
ear in a delimited text file.
 Use_Type_Default: Store missing values as default for datatype.
*/

CREATE EXTERNAL FILE FORMAT TextFileFormat WITH (
 FORMAT_TYPE = DELIMITEDTEXT, --for CSV files
 FORMAT_OPTIONS (
 FIELD_TERMINATOR = ',',
 FIRST_ROW = 2))

/* 5: Create an External Table
 LOCATION: Folder under the Data Lake Storage root folder.
 DATA_SOURCE: Specifies which Data Source Object to use.
 FILE_FORMAT: Specifies which File Format Object to use
 REJECT_TYPE: Specifies how you want to deal with rejected rows. Either Value or
 percentage of the total
 REJECT_VALUE: Sets the Reject value based on the reject type.
*/

/* IMP NOTE
External Tables are strongly typed.
This means that each row of the data being ingested must satisfy the table schema d
efinition. If a row does not match the schema definition, the row is rejected from
 the load.
*/

CREATE EXTERNAL TABLE [logdata]
(
 [Id] [int] NULL,
 [Correlationid] [varchar](200) NULL,
 [Operationname] [varchar](200) NULL,
 [Status] [varchar](100) NULL,
 [Eventcategory] [varchar](100) NULL,
 [Level] [varchar](100) NULL,
 [Time] [datetime] NULL,
 [Subscription] [varchar](200) NULL,
 [Eventinitiatedby] [varchar](1000) NULL,
 [Resourcetype] [varchar](1000) NULL,
 [Resourcegroup] [varchar](1000) NULL)
WITH (
 LOCATION = '/Log.csv',

💻 DP-203 Notes by Neil Bagchi 125

 DATA_SOURCE = log_data, --Data source name defined above with SAS token
 FILE_FORMAT = TextFileFormat
)

/* 6 CREATE TABLE AS - CTAS
 CTAS creates a new table and populates it with the results of a select statement.
 CTAS defines the new table to have the same columns and data types as the results
of the select statement.
 If you select all the columns from an external table, the new table is a replica
 of the columns and data types in the external table.
*/

CREATE TABLE [EventHistory]
WITH (DISTRIBUTION = HASH([OperationName]))
AS
SELECT * FROM [logdata];

--

SELECT [Operation name] , COUNT([Operation name]) as [Operation Count]
FROM [logdata]
GROUP BY [Operation name]
ORDER BY [Operation Count]

/* Common errors

1. External table 'logdata' is not accessible because the location does not exist o
r it is used by another process. Here your Shared Access Signature is an issue.

2. Msg 16544, Level 16, State 3, Line 34
The maximum reject threshold is reached. This happens when you try to select the ro
ws of data from the table. This can happen if the rows are not matching the schema
 defined for the table
*/

/* By default, tables are defined as clustered columnstore index.
After a load completes, some of the data rows might not be compressed into the colu
mnstore. To optimize query performance and columnstore compression after a load, re
build the table to force the columnstore index to compress all the rows.
*/
ALTER INDEX ALL ON [EventHistory_Lake] REBUILD;

-- verify the data was loaded into the 60 distributions
-- Find data skew for a distributed table
DBCC PDW_SHOWSPACEUSED('EventHistory');

CTAS is a more customizable version of the SELECT...INTO statement.
SELECT...INTO doesn't allow you to change neither the distribution method
nor the index type as part of the operation. You create the new table by

💻 DP-203 Notes by Neil Bagchi 126

using the default distribution type of ROUND_ROBIN, and the default table
structure of CLUSTERED COLUMNSTORE INDEX.

-- Lab - (Dedicated SQL Pool) - External Tables - Parquet

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'P@ssw0rd@123';

-- Here we are using the Storage account key for authorization

CREATE DATABASE SCOPED CREDENTIAL AzureStorageCredential
WITH
 IDENTITY = 'appdatalake7000',
 SECRET = 'VqJnhlUibasTfhSuAxkgIgY97GjRzHL9VNOPkjD8y+KYzl1LSDCflF6LXlrezAYKL3Mf1bu
LdZoJXa/38BXLYA==';

-- In the SQL pool, we can use Hadoop drivers to mention the source

CREATE EXTERNAL DATA SOURCE log_data
WITH (LOCATION = 'abfss://data@storageneil.dfs.core.windows.net',
 CREDENTIAL = AzureStorageCredential,
 TYPE = HADOOP
)

-- Here we are mentioning the file format as Parquet

CREATE EXTERNAL FILE FORMAT parquetfile
WITH (
 FORMAT_TYPE = PARQUET,
 DATA_COMPRESSION = 'org.apache.hadoop.io.compress.SnappyCodec'
);

-- Notice that the column names don't contain spaces
-- When Azure Data Factory was used to generate these files, the column names could
not have spaces

CREATE EXTERNAL TABLE [logdata]
(
 [Id] [int] NULL,
 [Correlationid] [varchar](200) NULL,
 [Operationname] [varchar](200) NULL,
 [Status] [varchar](100) NULL,
 [Eventcategory] [varchar](100) NULL,
 [Level] [varchar](100) NULL,
 [Time] [datetime] NULL,
 [Subscription] [varchar](200) NULL,
 [Eventinitiatedby] [varchar](1000) NULL,
 [Resourcetype] [varchar](1000) NULL,
 [Resourcegroup] [varchar](1000) NULL
)

WITH (
 LOCATION = '/parquet/*.parquet',--select all the parquet files from the folder

💻 DP-203 Notes by Neil Bagchi 127

 DATA_SOURCE = log_data,
 FILE_FORMAT = parquetfile
)

/*
A common error can come when trying to select the data, here you can get various er
rors such as MalformedInput

You need to ensure the column names map correctly and the data types are correct as
per the parquet file definition (Data types are embedded)
*/

SELECT * FROM logdata

SELECT [Operation name] , COUNT([Operation name]) as [Operation Count]
FROM logdata
GROUP BY [Operation name]
ORDER BY [Operation Count]

✅ 2) Loading Data into Dedicated SQL Pool

1) Using the Copy statement
→ Using T-SQL, we can transfer data into a table in a SQL Pool

A mistake that many people make when first exploring dedicated SQL Pools are to
use the service administrator account as the one used for loading data. Instead, it’s
better to create specific accounts assigned to different resource classes dependent on
the anticipated task. This will optimize load performance and maintain concurrency as
required by managing the available resource slots available within the dedicated SQL
Pool.

-- Lab - Loading data into a table - COPY Command - CSV

-- Never use the admin account for load operations (keep it only for monitoring and admi
n purposes)
-- Create a seperate user for load operations

-- This has to be run in the master database as we are adding a login and user
CREATE LOGIN user_load WITH PASSWORD = 'Azure@123';

--Here, we are adding a user associated with the login
CREATE USER user_load FOR LOGIN user_load;
GRANT ADMINISTER DATABASE BULK OPERATIONS TO user_load;
GRANT CREATE TABLE TO user_load;
GRANT ALTER ON SCHEMA::dbo TO user_load;

💻 DP-203 Notes by Neil Bagchi 128

/* We can create multiple workload groups in order to provision compute resources such t
hat two different tasks such as a user loading data doesn't use the full resource capaci
ty when a user is present to perform some analysis job*/

CREATE WORKLOAD GROUP DataLoads --Workload Isolation
WITH (
 MIN_PERCENTAGE_RESOURCE = 80
 ,CAP_PERCENTAGE_RESOURCE = 100
 ,REQUEST_MIN_RESOURCE_GRANT_PERCENT = 4 -- factor of 80 (guaranteed more than 20 con
currencies)
);
--[Max Concurrency] = [CAP_PERCENTAGE_RESOURCE] / [REQUEST_MIN_RESOURCE_GRANT_PERCENT]

CREATE WORKLOAD CLASSIFIER [ELTLogin] --Workload Classification
WITH (
 WORKLOAD_GROUP = 'DataLoads'
 ,MEMBERNAME = 'user_load'
 ,IMPORTANCE = High -- Workload Importance
);

-- Drop the external table if it exists
DROP EXTERNAL TABLE logdata

-- Create a normal table
-- Login as the new user and create the table
-- Here I have added more constraints when it comes to the width of the data type

CREATE TABLE [logdata]
(
 [Id] [int],
 [Correlationid] [varchar](200) ,
 [Operationname] [varchar](200) ,
 [Status] [varchar](100) ,
 [Eventcategory] [varchar](100) ,
 [Level] [varchar](100) ,
 [Time] [datetime] ,
 [Subscription] [varchar](200) ,
 [Eventinitiatedby] [varchar](1000) ,
 [Resourcetype] [varchar](1000) ,
 [Resourcegroup] [varchar](1000)
)

2) Azure Synapse Pipeline
Define pipelines to carry out copying activity

1. Go to the Synapse Studio (web.azuresynapse.net) and click on data

2. Click on the + icon to connect to an external data source

3. Multiple options like Blob storage, Cosmos DB, Data Lake Gen2 etc are
provided. Select the appropriate one, here is Gen2

💻 DP-203 Notes by Neil Bagchi 129

4. It will open a new linked service page where all the details have to be filled in
and then click on create

5. In order to fetch the data from the external table, we need to provide some
additional access to services which was not required when viewing the data as
admin in the Gen2 storage

6. Go to Access Control inside the Gen2 space, and add a role assignment with
Blob Data Contributor

7. Coming back to Synapse Studio, we will be able to see both dedicated SQL
pool data as well as external data

8. Now we can view all data and run SQL queries for any activity.

9. Since we want to load data, we can right-click on any file where we want to
append/ copy the data and click on New SQL script→Bulk Load

10. Fill in the required configuration settings and continuing forward, we will have a
SQL query auto-generated that can be used for copying the data

3) Using Polybase to define external tables
Here data from an external table can be copied into internal tables

PolyBase requires the following elements:

1. An external data source that points to the abfss path in ADLS Gen2 where the
Parquet files are located

2. An external file format for Parquet files

3. An external table that defines the schema for the files, as well as the location,
data source, and file format

-- Lab - Loading data using PolyBase

CREATE LOGIN user_load WITH PASSWORD = 'Azure@123';

CREATE USER user_load FOR LOGIN user_load;
GRANT ADMINISTER DATABASE BULK OPERATIONS TO user_load;
GRANT CREATE TABLE TO user_load;
GRANT ALTER ON SCHEMA::dbo TO user_load;

CREATE WORKLOAD GROUP DataLoads
WITH (
 MIN_PERCENTAGE_RESOURCE = 100

💻 DP-203 Notes by Neil Bagchi 130

 ,CAP_PERCENTAGE_RESOURCE = 100
 ,REQUEST_MIN_RESOURCE_GRANT_PERCENT = 100
);

CREATE WORKLOAD CLASSIFIER [ELTLogin]
WITH (
 WORKLOAD_GROUP = 'DataLoads'
 ,MEMBERNAME = 'user_load'
);

-- Here we are following the same process of creating an external table

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'P@ssw0rd@123' ;

-- If you want to see existing database scoped credentials
SELECT * FROM sys.database_scoped_credentials

CREATE DATABASE SCOPED CREDENTIAL AzureStorageCredential
WITH
 IDENTITY = 'appdatalake7000',
 SECRET = 'VqJnhlUibasTfhSuAxkgIgY97GjRzHL9VNOPkjD8y+KYzl1LSDCflF6LXlrezAYKL3Mf1buL
dZoJXa/38BXLYA==';

-- If you want to see the external data sources
SELECT * FROM sys.external_data_sources

--Step 1
CREATE EXTERNAL DATA SOURCE log_data
WITH (LOCATION = 'abfss://data@appdatalake7000.dfs.core.windows.net',
 CREDENTIAL = AzureStorageCredential,
 TYPE = HADOOP
)

-- If you want to see the external file formats
SELECT * FROM sys.external_file_formats

--Step 2
CREATE EXTERNAL FILE FORMAT parquetfile
WITH (
 FORMAT_TYPE = PARQUET,
 DATA_COMPRESSION = 'org.apache.hadoop.io.compress.SnappyCodec'
);

-- Create the external table as the admin user
--Step 3
CREATE EXTERNAL TABLE [logdata_external]
(
 [Id] [int] NULL,
 [Correlationid] [varchar](200) NULL,
 [Operationname] [varchar](200) NULL,

💻 DP-203 Notes by Neil Bagchi 131

 [Status] [varchar](100) NULL,
 [Eventcategory] [varchar](100) NULL,
 [Level] [varchar](100) NULL,
 [Time] [datetime] NULL,
 [Subscription] [varchar](200) NULL,
 [Eventinitiatedby] [varchar](1000) NULL,
 [Resourcetype] [varchar](1000) NULL,
 [Resourcegroup] [varchar](1000) NULL
)
WITH (
 LOCATION = '/parquet/',
 DATA_SOURCE = log_data,
 FILE_FORMAT = parquetfile
)

-- Now create a normal table by selecting all of the data from the external table

CREATE TABLE [logdata]
WITH
(
 DISTRIBUTION = ROUND_ROBIN,
 CLUSTERED INDEX (id)
)
AS
SELECT *
FROM [logdata_external];

✅ Azure Stream Analytics
Cloud-based stream processing engine (PaaS) solution that can
be used to define streaming jobs that ingest data from a
streaming source, apply a perpetual query and write the results
to output.

💻 DP-203 Notes by Neil Bagchi 132

Stream Analytics can route job output to many storage systems such as Azure Blob
storage, Azure SQL Database, Azure Data Lake Store, and Azure Cosmos DB. You can
also run batch analytics on stream outputs with Azure Synapse Analytics or HDInsight, or
you can send the output to another service, like Event Hubs for consumption or Power BI
for real-time visualization.

The process of consuming
data streams, analyzing them,
and deriving actionable
insights is called stream
processing. You can
transform streaming data using
the SQL-like Stream
Analytics Query Language to
perform temporal and other
aggregations against a data
stream to gain insights.

✅ Create a Stream Analytics job (link)
A Stream Analytics job is the fundamental unit in Stream Analytics that allows you to
define and run your stream processing logic. A job consists of 3 main components:

1) Input

💻 DP-203 Notes by Neil Bagchi 133

A job can have one or more inputs to continuously read data from. These streaming input
data sources could be Azure Event Hubs, Azure IoT Hub or Azure Storage. Stream
Analytics also supports reading static or slow-changing input data (called reference data)
which is often used to enrich streaming data and perform correlation and lookups.

Dynamic schema handling is a powerful feature, and key to stream processing. Data
streams often contain data from multiple sources, with multiple event types, each with
a unique schema. To route, filter, and process events on such streams, ASA has to
ingest them all whatever their schema.

But the capabilities offered by dynamic schema handling come with a potential
downside. Unexpected events can flow through the main query logic and break it. As
an example, we can use ROUND on a field of type NVARCHAR(MAX) . ASA will implicitly
cast it to float to match the signature of ROUND . Here we expect, or hope, this field will
always contain numeric values. But when we do receive an event with the field set
to "NaN" , or if the field is entirely missing, then the job may fail.

2) Output
A job can have one or more outputs to continuously write data to.

When you design your Stream Analytics query, refer to the name of the output by using
the INTO clause. You can use a single output per job, or multiple outputs per streaming
job (if you need them) by adding multiple INTO clauses to the query.

💻 DP-203 Notes by Neil Bagchi 134

Stream Analytics supports partitions for all outputs except for Power BI. Additionally,
for more advanced tuning of the partitions, the number of output writers can be
controlled using an INTO <partition count> clause in your query, which can be helpful in
achieving a desired job topology.

WITH Step1 AS (
 SELECT *
 FROM input
 PARTITION BY DeviceId
 INTO 10
)

SELECT * INTO [output] FROM Step1 PARTITION BY DeviceId

3) Query
The rich SQL like language support allows you to tackle scenarios such as parsing
complex JSON, filtering values, computing aggregates, performing joins, and even more
advanced use cases such as geospatial analytics and anomaly detection. We can also
extend this SQL language with JavaScript or C# user-defined functions (UDF) and
JavaScript user-defined-aggregates (UDA).

✅ Create a Stream Analytics cluster
A Stream Analytics cluster is a single-tenant deployment that can be used for complex
and demanding streaming use cases. You can run multiple Stream Analytics jobs on a
Stream Analytics cluster.

By default, Stream Analytics jobs run in the Standard multi-tenant environment which
forms the Standard SKU. Stream Analytics also provides a Dedicated SKU where you
can provision an entire Stream Analytics cluster that belongs to you.

Streaming Unit Capacity are available from 36 SUs through 396 SUs (36, 72, 108…).
We need to determine the size of the cluster by estimating how many Stream Analytics
job we plan to run and the total SUs the job will require. We can scale up or down as
required. (36 SUs mean approximately 36 MB/second throughput with millisecond
latency).

✅ Understand and Adjust Streaming Units (SUs)

💻 DP-203 Notes by Neil Bagchi 135

Streaming Units (SUs) represent the computing resources that
are allocated to execute a Stream Analytics job. The higher the
number of SUs, the more CPU and memory resources are
allocated for your job.

To achieve low latency stream processing, Azure Stream Analytics jobs perform all
processing in-memory. When running out of memory, the streaming job fails. The SU %
utilization metric describes the memory consumption of your workload.

One of the unique capability of Azure Stream Analytics job is to perform stateful
processing, such as windowed aggregates, temporal joins, and temporal analytic
functions. Each of these operators keeps state information.

The temporal window concept appears in several Stream Analytics query elements. The
following factors influence the memory used (part of streaming units metric)

1. Windowed aggregates: GROUP BY of Tumbling, Hopping, and Sliding windows

The memory consumed (state size) for a windowed aggregate isn't always directly
proportional to the window size. Instead, the memory consumed is proportional to the
cardinality of the data, or the number of groups in each time window. We can use
GROUP BY clause to reduce cardinality.

SELECT count(*)
FROM input PARTITION BY PartitionId
GROUP BY PartitionId, clusterid, TumblingWindow (minutes, 5)

2. Temporal joins: JOIN with DATEDIFF function

The memory consumed (state size) of a temporal join is proportional to the number of
events in the temporal wiggle room of the join, which is event input rate multiplied by
the wiggle room size. For reading more about this, click here

3. Temporal analytic functions: ISFIRST , TOPONE , LAST , and LAG with LIMIT
DURATION

The memory consumed (state size) of a temporal analytic function is proportional to
the event rate multiply by the duration. The memory consumed by analytic functions
isn't proportional to the window size, but rather partition count in each time window.

✅

💻 DP-203 Notes by Neil Bagchi 136

✅ Windowing Functions

Windowing functions are operations performed against the data
contained within a temporal or time-boxed window. A window
contains event data along a timeline. Using windowing provides
a way to aggregate events over various time intervals
depending on specific window definitions.

Stream Analytics has native support for windowing functions. There are five kinds of
temporal windows to choose from: Tumbling, Hopping, Sliding, Session, and
Snapshot windows. You use the window functions in the GROUP BY clause of the query
syntax in your Stream Analytics jobs. You can also aggregate events over multiple
windows using the Windows() function.

1) Tumbling window
Tumbling window functions are used to
segment a data stream into distinct
time segments and perform a function
against them, such as in the example
below. The key differentiators of a
Tumbling window are that they repeat, do
not overlap, and an event cannot belong
to more than one tumbling window.

💻 DP-203 Notes by Neil Bagchi 137

By default, windows are inclusive of the end of the window and exclusive of the
beginning. However, you can use the Offset parameter to change this behavior.

Complex Code Example

--Example of a query using tumbling windows

/*The query averages the engine temperature and speed over a two-second duration by add
ing TumblingWindow(Duration(second, 2)) to the query's GROUP BY clause. Then it selects
all telemetry data, including the average values from the previous step, and specifies
 the anomalies as new fields

The query outputs all fields from the anomalies step into the powerBIAlerts output wher
e aggressivedriving = 1 or enginetempanomaly = 1 or oilanomaly = 1 for reporting. The q
uery also aggregates the average engine temperature and speed of all vehicles over the
 past two minutes, using TumblingWindow(Duration(minute, 2)), and outputs these fields
 to the synapse output.*/

WITH Averages AS (
 SELECT
 AVG(engineTemperature) averageEngineTemperature,
 AVG(speed) averageSpeed
 FROM
 eventhub TIMESTAMP BY [timestamp]
 GROUP BY
 TumblingWindow(Duration(second, 2))
),
Anomalies AS (
 select
 t.vin,
 t.[timestamp],
 t.engineTemperature,
 a.averageEngineTemperature,
 a.averageSpeed,
 t.engineoil,
 t.accelerator_pedal_position,
 t.brake_pedal_status,
 t.transmission_gear_position,
 (CASE WHEN a.averageEngineTemperature >= 405 OR a.averageEngineTemperature <= 1
5 THEN 1 ELSE 0 END) AS enginetempanomaly,
 (CASE WHEN t.engineoil <= 1 THEN 1 ELSE 0 END) AS oilanomaly,
 (CASE WHEN (t.transmission_gear_position = 'first' OR
 t.transmission_gear_position = 'second' OR
 t.transmission_gear_position = 'third') AND
 t.brake_pedal_status = 1 AND
 t.accelerator_pedal_position >= 90 AND
 a.averageSpeed >= 55 THEN 1 ELSE 0 END) AS aggressivedriving
 FROM eventhub t TIMESTAMP BY [timestamp]
 INNER JOIN Averages a ON DATEDIFF(second, t, a) BETWEEN 0 And 2
),
VehicleAverages AS (

💻 DP-203 Notes by Neil Bagchi 138

 SELECT
 AVG(engineTemperature) averageEngineTemperature,
 AVG(speed) averageSpeed,
 System.TimeStamp() AS snapshot
 FROM
 eventhub TIMESTAMP BY [timestamp]
 GROUP BY
 TumblingWindow(Duration(minute, 2))
)

-- INSERT INTO POWER BI
SELECT
 *
INTO
 powerBIAlerts
FROM
 Anomalies
WHERE aggressivedriving = 1 OR enginetempanomaly = 1 OR oilanomaly = 1

-- INSERT INTO SYNAPSE ANALYTICS
SELECT
 *
INTO
 synapse
FROM
 VehicleAverages

2) Hopping window
Hopping window functions hop forward in
time by a fixed period. It may be easy to
think of them as Tumbling windows that
can overlap. Events can belong to more
than one Hopping window result set.

The windowsize is 10 seconds, and
the hopsize is 5 seconds

3) Sliding window
Sliding windows, unlike Tumbling or
Hopping windows, output events only
for points in time when the content of
the window actually changes. In other

💻 DP-203 Notes by Neil Bagchi 139

words, when an event enters or exits the
window. So, every window has at least
one event.

4) Session window
Session window cluster
together events that arrive at
similar times, filtering out
periods of time where there is
no data.

The following query measures user session length by creating a SessionWindow over
clickstream data with a timeoutsize of 5 seconds and a maximumdurationsize of 10 seconds

A session window begins when the first event occurs. If another event occurs within the
specified timeout from the last ingested event, then the window extends to include the
new event. Otherwise, if no events occur within the timeout, then the window is closed at
the timeout.

If events keep occurring within the specified timeout, the session window will keep
extending until the maximum duration is reached. The maximum duration checking
intervals are set to be the same size as the specified max duration. For example, if the
max duration is 10, then the checks on if the window exceeds the maximum duration will
happen at t = 0, 10, 20, 30, etc.

When a partition key is provided, the events are grouped together by the key and the
session window is applied to each group independently. This partitioning is useful for
cases where you need different session windows for different users or devices.

Code Example with partition by

-- Output the count of events that occur within 2 minutes of each other with a maximum
 duration of 60 minutes.

💻 DP-203 Notes by Neil Bagchi 140

SELECT
 Username,
 MIN(ClickTime) AS WindowStart,
 System.Timestamp() AS WindowEnd,
 DATEDIFF(s, MIN(ClickTime), System.Timestamp()) AS DurationInSeconds
FROM Clickstream TIMESTAMP BY ClickTime
GROUP BY Username, SessionWindow(minute, 2, 60) OVER (PARTITION BY Username)

5) Snapshot window
Snapshot windows group events that have the same timestamp. Unlike other windowing
types, which require a specific window function, you can apply a snapshot window by
adding System.Timestamp() to the GROUP BY clause.

✅ Monitoring Performance + Metrics

💻 DP-203 Notes by Neil Bagchi 141

Some of the important metrics:

SU% Utilization
Percentage of memory that your job utilizes. If this metric is consistently over 80 percent,
the watermark delay is rising, and the number of backlogged events is rising, consider
increasing streaming units (SUs) and/or scale with query parallelization.

Runtime Error
The total number of errors related to query processing. Examine the activity or resource
logs and make appropriate changes to the inputs, query, or outputs.

Watermark delay (Important)
This metric is aimed towards providing a reliable signal of job health which is agnostic to
input and output patterns of the job.

Modern stream processing systems differentiate between event time also referred to as
application time, and arrival time. EVENT TIME is the time generated by the producer of the
event and typically contained in the event data as one of the columns. ARRIVAL TIME is the
time when the event was received by the event ingestion layer, for example, when the
event reaches Event Hubs.

Most applications prefer to use event time as it excludes possible delays associated with
transferring and processing of events. In-Stream Analytics, you can use the TIMESTAMP BY
clause to specify what value should be used as event time.

For example, when Stream Analytics reports a certain watermark value at the output, it
guarantees that all events prior to this timestamp were already computed. Watermark can
be used as an indicator of liveliness for the data produced by the job. If the delay between
the current time and the watermark is small, it means the job is keeping up with the
incoming data and produces results defined by the query on time.

Below we show an illustration of this concept using a simple example of a passthrough
query:

💻 DP-203 Notes by Neil Bagchi 142

This value represents the maximum watermark delay across all partitions of all
outputs in the job.

Input deserialization error
The number of input events that couldn't be deserialized. Examine the activity or resource
logs and make appropriate changes to the input

Backlogged Input events

💻 DP-203 Notes by Neil Bagchi 143

The number of input events that are backlogged. A nonzero value for this metric implies
that your job can't keep up with the number of incoming events. If this value is slowly
increasing or is consistently nonzero, you should scale out your job.

✅ Azure Event Hub
Azure Event Hubs is a big data streaming platform and event
ingestion service. It can receive and process millions of events
per second. Data sent to an event hub can be transformed and
stored by using any real-time analytics provider or
batching/storage adapters. It can also be configured to scale
dynamically, when required, to handle increased throughput.

Event Hubs is one of three types of message brokers available on Azure. Message
brokers act as intermediaries between event producers, such as mobile phone apps, and
event consumers, like dashboards or data processing pipelines.

Live Data Processing should be able to ingest high volumes of data, process these data using sufficient
processing power, and generate output data in real-time that will get stored in storage with high

bandwidth

💻 DP-203 Notes by Neil Bagchi 144

An entity that sends data to your event hub is called a publisher or producer

An entity that reads data from an event hub is called a consumer, or a subscriber.
Each consumer group can independently seek and read data, from each partition, at
their own pace.

An event is a small packet of information (a datagram) that contains a notification.
Events can be published individually or in batches, but a single publication can’t
exceed 1 MB.

Event publishers are any app or device that can send out events using either HTTPS,
Advanced Message Queuing Protocol (AMQP) 1.0, or Apache Kafka.

For publishers that send data frequently, AMQP has better performance. (More
reading)

For more intermittent publishing, HTTPS is the better option.

Temporal Decoupling

💻 DP-203 Notes by Neil Bagchi 145

The temporal decoupling provided by message brokers means that the event producer
and event consumers don’t need to run concurrently.

Load Balancing
Event Hubs is able to handle sudden influxes of traffic than a directly coupled consumer
that needs to spend time processing each message. As consumers pull data at their own
rate, they avoid being overloaded at any given moment and can process any backlog
during moments of lower traffic

Partition
A partition is an ordered sequence of events that are held in an Event Hub Partitions can
be used to divide or prioritize work and ensure that certain types of data are physically
stored together for ease of processing and backup.

Auto-Inflate automatically scales the number of Throughput Units assigned to your
Standard Tier Event Hubs Namespace when your traffic exceeds the capacity of the
Throughput Units assigned to it. You can specify a limit to which the Namespace will
automatically scale.

Checkpointing
It is a process by which readers mark or commit their position within a partition event
sequence. Checkpointing is the responsibility of the consumer and occurs on a per-
partition basis within a consumer group.

📌 Pull Model

Event Hubs guarantees message caching, but the responsibility for
reading that cache falls to the consumer application. This makes it the
responsibility of the consumer(s) to ensure data are processed before they
expire. This provides flexibility but also can mean that messages are lost in
exceptional circumstances.

✅ Create and configure an event hub
There are two main steps to creating a new event hub.

💻 DP-203 Notes by Neil Bagchi 146

1. The first step is to define the Event Hubs namespace. An Event Hubs namespace is
a container for managing one or more event hubs.

2. The second step is to create an event hub in that namespace. The following
parameters are required to create an event hub:

Event hub name - Event hub name that is unique within your subscription

Partition count - The number of partitions required in an event hub (between 2
and 32 for the standard tier). The partition count should be directly related to the
expected number of concurrent consumers and can't be changed after the hub
has been created. If not defined, the value defaults to 4.

Message retention - The number of days (1 to 7 for the standard tier) that
messages will remain available if the data stream needs to be replayed for any
reason. If not defined, this value defaults to 7. For Event
Hubs Premium and Dedicated, the maximum retention period is 90 days.

💻 DP-203 Notes by Neil Bagchi 147

✅ Monitor Performance

💻 DP-203 Notes by Neil Bagchi 148

Useful metrics available in Event Hubs include:

Throttled Requests: The number of throttled requests because the throughput
exceeded unit usage.

ActiveConnections: The number of active connections on a namespace or Event
Hub.

Incoming/Outgoing Bytes: The number of bytes sent to/received from the Event
Hubs service over a specified period.

The Overview pane for your Event Hub service shows message counts, which represent the data
(events) received and sent by the event hub.

💻 DP-203 Notes by Neil Bagchi 149

✅ Azure Monitor
Centralized management and consolidated monitoring of all
azure resources. Azure Monitor groups together other services
like Metrics, Alerts, Activity Log, etc

💻 DP-203 Notes by Neil Bagchi 150

Metrics
Metrics are numerical values that
describe some aspect of a system at
a particular point in time.

Logs
Logs are events that occurred within
the system. They can contain
different kinds of data and may be
structured or free-form text with a
timestamp.

Traces

💻 DP-203 Notes by Neil Bagchi 151

Traces are a series of related events that follow a user request. They can be used to
determine the behavior of application code and the performance of different transactions.

While logs will often be created by individual components of a distributed system, a trace
measures the operation and performance of your application across the entire set of
components.

Changes
Changes are a series of events that occur in your Azure application and resources.

Azure Dashboards allows combining different kinds of data

