
©2023 Databricks Inc. — All rights reserved

Build Data
Pipelines with
Delta Live Tables

1

Module 04

©2023 Databricks Inc. — All rights reserved

The Medallion Architecture

Introduction to Delta Live Tables

DE 4.1 - DLT UI Walkthrough

DE 4.1A - SQL Pipelines

DE 4.1B - Python Pipelines

DE 4.2 - Python vs SQL

DE 4.3 - Pipeline Results

DE 4.4 - Pipeline Event Logs

Agenda
Build Data Pipelines with Delta Live Tables

2

©2023 Databricks Inc. — All rights reserved

The Medallion
Architecture

3

©2023 Databricks Inc. — All rights reserved

Medallion Architecture in the Lakehouse

Data Lake

CSV,
JSON,TXT…

Kinesis

Raw ingestion
and history

BRONZE

Filtered, cleaned,
augmented

SILVER

Business-level
aggregates

GOLD

BI &
Reporting

Streaming
Analytics

Data Science
& ML

Data Quality & Governance Data Sharing

4

©2023 Databricks Inc. — All rights reserved

Multi-Hop in the Lakehouse
Bronze Layer

Typically just a raw copy of ingested data

Replaces traditional data lake

Provides efficient storage and querying of full, unprocessed
history of data

5

Bronze

©2023 Databricks Inc. — All rights reserved

Multi-Hop in the Lakehouse
Silver Layer

Reduces data storage complexity, latency, and redundancy

Optimizes ETL throughput and analytic query performance

Preserves grain of original data (without aggregations)

Eliminates duplicate records

Production schema enforced

Data quality checks, corrupt data quarantined

6

Silver

©2023 Databricks Inc. — All rights reserved

Multi-Hop in the Lakehouse
Gold Layer

Powers ML applications, reporting, dashboards, ad hoc analytics

Refined views of data, typically with aggregations

Reduces strain on production systems

Optimizes query performance for business-critical data

7

Gold

©2023 Databricks Inc. — All rights reserved

Introduction to Delta
Live Tables

8

©2023 Databricks Inc. — All rights reserved

Multi-Hop in the Lakehouse

CSV
JSON
TXT

Bronze Silver Gold

AI and reporting

Streaming analytics

Data quality

Databricks Auto
Loader Raw Ingestion and

History
Filtered, Cleaned,

Augmented
Business-level

Aggregates

©2023 Databricks Inc. — All rights reserved

The Reality is Not so Simple

Bronze Silver Gold

©2023 Databricks Inc. — All rights reserved

Large scale ETL is complex and brittle

Hard to build and maintain table
dependencies

Difficult to switch between batch
and stream processing

Difficult to monitor and enforce
data quality

Impossible to trace data lineage

Poor observability at granular,
data level

Error handling and recovery is
laborious

Complex pipeline
development

Data quality and
governance

Difficult pipeline
operations

11

©2023 Databricks Inc. — All rights reserved

Introducing Delta Live Tables
Make reliable ETL easy on Delta Lake

12

Operate with agility

Declarative tools to
build batch and
streaming data
pipelines

Trust your data

DLT has built-in
declarative quality
controls

Declare quality
expectations and
actions to take

Scale with reliability

Easily scale
infrastructure
alongside your data

©2023 Databricks Inc. — All rights reserved

What is a LIVE TABLE?

13

©2023 Databricks Inc. — All rights reserved

What is a Live Table?

A live table is:

• Defined by a SQL query

• Created and kept up-to-date by a
pipeline

Live tables provides tools to:

• Manage dependencies

• Control quality

• Automate operations

• Simplify collaboration

• Save costs

• Reduce latency

Live Tables are materialized views for the lakehouse.

14

CREATE OR REFRESH LIVE TABLE report

AS SELECT sum(profit)

FROM prod.sales

©2023 Databricks Inc. — All rights reserved

What is a Streaming Live Table?

A streaming live table is “stateful”:

• Ensures exactly-once processing of
input rows

• Inputs are only read once

• Streaming Live tables compute results
over append-only streams such as
Kafka, Kinesis, or Auto Loader (files on
cloud storage)

• Streaming live tables allow you to reduce
costs and latency by avoiding
reprocessing of old data.

Based on SparkTM Structured Streaming

15

CREATE STREAMING LIVE TABLE report

AS SELECT sum(profit)

FROM cloud_files(prod.sales)

©2022 Databricks Inc. — All rights reserved

When should I use
streaming?

16

©2022 Databricks Inc. — All rights reserved

Using Spark Structured Streaming for ingestion

CREATE STREAMING LIVE TABLE raw_data

AS SELECT *

FROM cloud_files("/data", "json”)

This example creates a table with all the
json data stored in “/data”:

• cloud_files keeps track of which files
have been read to avoid duplication and
wasted work

• Supports both listing and notifications
for arbitrary scale

• Configurable schema inference and
schema evolution

Easily ingest files from cloud storage as they are uploaded

17

©2023 Databricks Inc. — All rights reserved

Using the SQL STREAM() function

CREATE STREAMING LIVE TABLE mystream

 AS SELECT *

 FROM STREAM(my_table)

• STREAM(my_table) reads a stream of
new records, instead of a snapshot

• Streaming tables must be an
append-only table

• Any append-only delta table can be
read as a stream (i.e. from the live
schema, from the catalog, or just from a
path).

Stream data from any Delta table

18

Pitfall: my_table must be an append-only source.

e.g. it may not:

• be the target of APPLY CHANGES INTO
• define an aggregate function
• be a table on which you’ve executed DML to

delete/update a row (see GDPR section)

©2023 Databricks Inc. — All rights reserved

How do I use DLT?

19

©2023 Databricks Inc. — All rights reserved 20

Creating Your First Live Table Pipeline
SQL to DLT in three easy steps…

Write create live table Create a pipeline Click start

• Table definitions are written
(but not run) in notebooks

• Databricks Repos allow you
to version control your table
definitions.

• A Pipeline picks one or more
notebooks of table
definitions, as well as any
configuration required.

• DLT will create or update all
the tables in the pipelines.

©2023 Databricks Inc. — All rights reserved

Development vs Production
Fast iteration or enterprise grade reliability

• Reuses a long-running cluster
running for fast iteration.

• No retries on errors enabling
faster debugging.

• Cuts costs by turning off clusters
as soon as they are done (within 5
minutes)

• Escalating retries, including
cluster restarts, ensure reliability
in the face of transient issues.

Development Mode Production Mode

21

In the Pipelines UI:

BEST PRACTICE

©2023 Databricks Inc. — All rights reserved

What if I have
dependent tables?

22

©2023 Databricks Inc. — All rights reserved

Declare LIVE Dependencies

• Dependencies owned by other producers
are just read from the catalog or spark
data source as normal.

• LIVE dependencies, from the same
pipeline, are read from the LIVE schema.

• DLT detects LIVE dependencies and
executes all operations in correct order.

• DLT handles parallelism and captures the
lineage of the data.

Using the LIVE virtual schema.

23

CREATE LIVE TABLE events

AS SELECT … FROM prod.raw_data

CREATE LIVE TABLE report

AS SELECT … FROM LIVE.events

reportevents

©2023 Databricks Inc. — All rights reserved

How do I ensure
Data Quality?

24

©2023 Databricks Inc. — All rights reserved

Ensure correctness with Expectations

CONSTRAINT valid_timestamp

EXPECT (timestamp > '2012-01-01’)

ON VIOLATION DROP

@dlt.expect_or_drop(

 "valid_timestamp",

 col("timestamp") > '2012-01-01')

Expectations are true/false expressions
that are used to validate each row during
processing.

DLT offers flexible policies on how to handle
records that violate expectations:

• Track number of bad records

• Drop bad records

• Abort processing for a single bad record

Expectations are tests that ensure data quality in production

25

BEST PRACTICE

©2023 Databricks Inc. — All rights reserved

What about
operations?

26

©2023 Databricks Inc. — All rights reserved

Pipelines UI (1 of 5)
A one stop shop for ETL debugging and operations

• Visualize data flows
between tables

27

©2023 Databricks Inc. — All rights reserved

Pipelines UI (2 of 5)
A one stop shop for ETL debugging and operations

• Visualize data flows
between tables

• Discover metadata and
quality of each table

28

©2023 Databricks Inc. — All rights reserved

Pipelines UI (3 of 5)
A one stop shop for ETL debugging and operations

• Visualize data flows
between tables

• Discover metadata and
quality of each table

• Access to historical
updates

29

©2023 Databricks Inc. — All rights reserved

Pipelines UI (4 of 5)
A one stop shop for ETL debugging and operations

• Visualize data flows
between tables

• Discover metadata and
quality of each table

• Access to historical
updates

• Control operations

30

©2023 Databricks Inc. — All rights reserved

Pipelines UI (5 of 5)
A one stop shop for ETL debugging and operations

• Visualize data flows
between tables

• Discover metadata and
quality of each table

• Access to historical
updates

• Control operations

• Dive deep into events

31

©2023 Databricks Inc. — All rights reserved

The Event Log

Time and current status, for all
operations

Pipeline and cluster
configurations

Row counts

The event log automatically records all pipelines operations.

Table schemas, definitions, and
declared properties

Table-level lineage

Query plans used to update
tables

Expectation pass / failure / drop
statistics

Input/Output rows that caused
expectation failures

Operational Statistics Provenance Data Quality

32

©2022 Databricks Inc. — All rights reserved

How can I use
parameters?

33

©2023 Databricks Inc. — All rights reserved

Modularize your code with configuration
Avoid hard coding paths, topic names, and other constants in your code.

A pipeline’s configuration is a
map of key value pairs that
can be used to parameterize
your code:

• Improve code
readability/maintainability

• Reuse code in multiple
pipelines for different data

34

CREATE STREAMING LIVE TABLE data AS
SELECT * FROM cloud_files("${my_etl.input_path}", "json")

@dlt.table
def data():
 input_path = spark.conf.get("my_etl.input_path”)
 spark.readStream.format("cloud_files”).load(input_path)

©2023 Databricks Inc. — All rights reserved

How can I do
change data capture
(CDC)?

35

©2023 Databricks Inc. — All rights reserved

APPLY CHANGES INTO for CDC
Maintain an up-to-date replica of a table stored elsewhere

APPLY CHANGES INTO LIVE.cities

FROM STREAM(LIVE.city_updates)

KEYS (id)

SEQUENCE BY ts

36

{UPDATE}
{DELETE}
{INSERT}

APPLY
CHANGES
INTO

Up-to-date Snapshot

©2023 Databricks Inc. — All rights reserved

APPLY CHANGES INTO for CDC

APPLY CHANGES INTO LIVE.cities

FROM STREAM(LIVE.city_updates)

KEYS (id)

SEQUENCE BY ts

Maintain an up-to-date replica of a table stored elsewhere

37

city_updates

{"id": 1, "ts": 1, "city": "Bekerly, CA"}

A target for the changes to
be applied to.

id city

cities

©2023 Databricks Inc. — All rights reserved

APPLY CHANGES INTO for CDC

APPLY CHANGES INTO LIVE.cities

FROM STREAM(LIVE.city_updates)

KEYS (id)

SEQUENCE BY ts

Maintain an up-to-date replica of a table stored elsewhere

38

city_updates

{"id": 1, "ts": 1, "city": "Bekerly, CA"}

A source of changes,
currently this has to be a

stream.

©2023 Databricks Inc. — All rights reserved

APPLY CHANGES INTO for CDC

APPLY CHANGES INTO LIVE.cities

FROM STREAM(LIVE.city_updates)

KEYS (id)

SEQUENCE BY ts

Maintain an up-to-date replica of a table stored elsewhere

39

city_updates

{"id": 1, "ts": 1, "city": "Bekerly, CA"}

A unique key that can be
used to identify a given row. id city

cities

©2023 Databricks Inc. — All rights reserved

APPLY CHANGES INTO for CDC

APPLY CHANGES INTO LIVE.cities

FROM STREAM(LIVE.city_updates)

KEYS (id)

SEQUENCE BY ts

Maintain an up-to-date replica of a table stored elsewhere

40

city_updates

{"id": 1, "ts": 100, "city": "Bekerly, CA"}

A sequence that can be used
to order changes:
• Log sequence number (lsn)
• Timestamp
• Ingestion time

id city

cities

©2023 Databricks Inc. — All rights reserved

APPLY CHANGES INTO for CDC

APPLY CHANGES INTO LIVE.cities

FROM STREAM(LIVE.city_updates)

KEYS (id)

SEQUENCE BY ts

Maintain an up-to-date replica of a table stored elsewhere

41

city_updates

{"id": 1, "ts": 100, "city": "Bekerly, CA"}
{"id": 1, "ts": 200, "city": "Berkeley, CA"}

id

1

city

Bekerly, CA Berkeley, CA

cities

©2023 Databricks Inc. — All rights reserved

Change Data Capture (CDC) from RDBMS
A variety of 3rd party tools can provide a streaming change feed

cloud_files
RDS

Amazon DMS to S3 APPLY CHANGES INTO

REFERENCE ARCHITECTURE

replicated_table

MySQL or
Postgres

Debezium APPLY CHANGES INTO

replicated_table

Oracle
Golden Gate APPLY CHANGES INTO

replicated_table

©2023 Databricks Inc. — All rights reserved

What do I no longer
need to manage with
DLT?

43

©2023 Databricks Inc. — All rights reserved

Automated Data Management

What:

DLT encodes Delta best practices
automatically when creating DLT
tables.

How:

DLT sets the following properties:

• optimizeWrite
• autoCompact
• tuneFileSizesForRewrites

DLT automatically optimizes data for performance & ease-of-use

What:

DLT automatically manages your
physical data to minimize cost and
optimize performance.

How:

• runs vacuum daily
• runs optimize daily

You still can tell us how you want it
organized (ie ZORDER)

What:

Schema evolution is handled for you

How:

Modifying a live table transformation
to add/remove/rename a column will
automatically do the right thing.

When removing a column in a
streaming live table, old values are
preserved.

Best Practices Physical Data Schema Evolution

44

©2023 Databricks Inc. — All rights reserved

DE 4.1 - Using the Delta
Live Tables UI

45

Deploy a DLT pipeline

Explore the resultant DAG

Execute an update of the pipeline

©2023 Databricks Inc. — All rights reserved

46

DE 4.1.1 - Fundamentals of
DLT Syntax
Declaring Delta Live Tables

Ingesting data with Auto Loader

Using parameters in DLT Pipelines

Enforcing data quality with constraints

Adding comments to tables

Describing differences in syntax and execution of live tables and streaming live
tables

©2023 Databricks Inc. — All rights reserved

47

DE 4.1.2 - More DLT SQL
Syntax
Processing CDC data with APPLY CHANGES INTO

Declaring live views

Joining live tables

Describing how DLT library notebooks work together in a pipeline

Scheduling multiple notebooks in a DLT pipeline

©2023 Databricks Inc. — All rights reserved

48

DE 4.2 - Delta Live Tables:
Python vs SQL
Identify key differences between the Python and SQL implementations of Delta
Live Tables

©2023 Databricks Inc. — All rights reserved

49

DE 4.3 - Exploring the
Results of a DLT Pipeline

©2023 Databricks Inc. — All rights reserved

50

DE 4.4 - Exploring the
Pipeline Events Logs

©2023 Databricks Inc. — All rights reserved

51

DE 4.1.3 - Troubleshooting
DLT Syntax Lab
Identifying and troubleshooting DLT syntax

Iteratively developing DLT pipelines with notebooks

©2023 Databricks Inc. — All rights reserved 52

