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The Medallion Architecture

Introduction to Delta Live Tables

DE 4.1 - DLT UI Walkthrough

DE 4.1A - SQL Pipelines

DE 4.1B - Python Pipelines

DE 4.2 - Python vs SQL

DE 4.3 - Pipeline Results

DE 4.4 - Pipeline Event Logs

Agenda
Build Data Pipelines with Delta Live Tables
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The Medallion 
Architecture
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Medallion Architecture in the Lakehouse

Data Lake

CSV,
JSON,TXT…

Kinesis

Raw ingestion
and history

BRONZE

Filtered, cleaned, 
augmented

SILVER

Business-level 
aggregates

GOLD

BI & 
Reporting

Streaming
Analytics

Data Science 
& ML

Data Quality & Governance Data Sharing
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Multi-Hop in the Lakehouse
Bronze Layer

Typically just a raw copy of ingested data

Replaces traditional data lake

Provides efficient storage and querying of full, unprocessed 
history of data

5

Bronze
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Multi-Hop in the Lakehouse
Silver Layer

Reduces data storage complexity, latency, and redundancy

Optimizes ETL throughput and analytic query performance

Preserves grain of original data (without aggregations)

Eliminates duplicate records

Production schema enforced

Data quality checks, corrupt data quarantined
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Silver
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Multi-Hop in the Lakehouse
Gold Layer

Powers ML applications, reporting, dashboards, ad hoc analytics

Refined views of data, typically with aggregations

Reduces strain on production systems

Optimizes query performance for business-critical data
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Gold
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Introduction to Delta 
Live Tables
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Multi-Hop in the Lakehouse

CSV
JSON
TXT

Bronze Silver Gold

AI and reporting

Streaming analytics

Data quality

Databricks Auto 
Loader Raw Ingestion and 

History
Filtered, Cleaned, 

Augmented
Business-level 

Aggregates
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The Reality is Not so Simple

Bronze Silver Gold
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Large scale ETL is complex and brittle

Hard to build and maintain table 
dependencies

Difficult to switch between batch 
and stream processing

Difficult to monitor and enforce 
data quality

Impossible to trace data lineage

Poor observability at granular, 
data level

Error handling and recovery is 
laborious

Complex pipeline 
development

Data quality and 
governance

Difficult pipeline 
operations

11
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Introducing Delta Live Tables 
Make reliable ETL easy on Delta Lake
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Operate with agility

Declarative tools to 
build batch and 
streaming data 
pipelines 

Trust your data

DLT has built-in 
declarative quality 
controls

Declare quality 
expectations and 
actions to take

Scale with reliability

Easily scale 
infrastructure 
alongside your data
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What is a LIVE TABLE?

13
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What is a Live Table?

A live table is: 

• Defined by a SQL query

• Created and kept up-to-date by a 
pipeline

Live tables provides tools to:

• Manage dependencies

• Control quality

• Automate operations

• Simplify collaboration

• Save costs

• Reduce latency

Live Tables are materialized views for the lakehouse.
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CREATE OR REFRESH LIVE TABLE report

AS SELECT sum(profit)

FROM prod.sales
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What is a Streaming Live Table?

A streaming live table is “stateful”: 

• Ensures exactly-once processing of 
input rows

• Inputs are only read once

• Streaming Live tables compute results 
over append-only streams such as 
Kafka, Kinesis, or Auto Loader (files on 
cloud storage)

• Streaming live tables allow you to reduce 
costs and latency by avoiding 
reprocessing of old data.

Based on SparkTM Structured Streaming

15

CREATE STREAMING LIVE TABLE report

AS SELECT sum(profit)

FROM cloud_files(prod.sales)
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When should I use 
streaming?

16



©2022 Databricks Inc. — All rights reserved

Using Spark Structured Streaming for ingestion

CREATE STREAMING LIVE TABLE raw_data

AS SELECT *

FROM cloud_files("/data", "json”)

This example creates a table with all the 
json data stored in “/data”:

• cloud_files keeps track of which files 
have been read to avoid duplication and 
wasted work

• Supports both listing and notifications 
for arbitrary scale

• Configurable schema inference and 
schema evolution

Easily ingest files from cloud storage as they are uploaded

17
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Using the SQL STREAM() function

CREATE STREAMING LIVE TABLE mystream

 AS SELECT *

 FROM STREAM(my_table)

• STREAM(my_table) reads a stream of 
new records, instead of a snapshot

• Streaming tables must be an 
append-only table

• Any append-only delta table can be 
read as a stream (i.e. from the live 
schema, from the catalog, or just from a 
path).

Stream data from any Delta table

18

Pitfall: my_table must be an append-only source. 

e.g. it may not:

• be the target of APPLY CHANGES INTO
• define an aggregate function
• be a table on which you’ve executed DML to 

delete/update a row (see GDPR section)



©2023 Databricks Inc. — All rights reserved

How do I use DLT?

19
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Creating Your First Live Table Pipeline
SQL to DLT in three easy steps…

Write create live table Create a pipeline Click start

• Table definitions are written 
(but not run) in notebooks

• Databricks Repos allow you 
to version control your table 
definitions.

• A Pipeline picks one or more 
notebooks of table 
definitions, as well as any 
configuration required.

• DLT will create or update all 
the tables in the pipelines.
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Development vs Production
Fast iteration or enterprise grade reliability

• Reuses a long-running cluster 
running for fast iteration.

• No retries on errors enabling 
faster debugging.

• Cuts costs by turning off clusters 
as soon as they are done (within 5 
minutes)

• Escalating retries, including 
cluster restarts, ensure reliability 
in the face of transient issues.

Development Mode Production Mode

21

In the Pipelines UI:

BEST PRACTICE
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What if I have 
dependent tables?

22
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Declare LIVE Dependencies

• Dependencies owned by other producers 
are just read from the catalog or spark 
data source as normal.

• LIVE dependencies, from the same 
pipeline, are read from the LIVE schema.

• DLT detects LIVE dependencies and 
executes all operations in correct order.

• DLT handles parallelism and captures the 
lineage of the data.

Using the LIVE virtual schema. 
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CREATE LIVE TABLE events

AS SELECT … FROM prod.raw_data

CREATE LIVE TABLE report

AS SELECT … FROM LIVE.events

reportevents
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How do I ensure 
Data Quality?

24
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Ensure correctness with Expectations

CONSTRAINT valid_timestamp

EXPECT (timestamp > '2012-01-01’)

ON VIOLATION DROP

@dlt.expect_or_drop(

  "valid_timestamp",

  col("timestamp") > '2012-01-01')

Expectations are true/false expressions 
that are used to validate each row during 
processing.

DLT offers flexible policies on how to handle 
records that violate expectations:

• Track number of bad records

• Drop bad records

• Abort processing for a single bad record

Expectations are tests that ensure data quality in production

25

BEST PRACTICE
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What about 
operations?

26
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Pipelines UI (1 of 5)
A one stop shop for ETL debugging and operations

• Visualize data flows 
between tables

27
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Pipelines UI (2 of 5)
A one stop shop for ETL debugging and operations

• Visualize data flows 
between tables

• Discover metadata and 
quality of each table

28
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Pipelines UI (3 of 5)
A one stop shop for ETL debugging and operations

• Visualize data flows 
between tables

• Discover metadata and 
quality of each table

• Access to historical 
updates

29
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Pipelines UI (4 of 5)
A one stop shop for ETL debugging and operations

• Visualize data flows 
between tables

• Discover metadata and 
quality of each table

• Access to historical 
updates

• Control operations

30
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Pipelines UI (5 of 5)
A one stop shop for ETL debugging and operations

• Visualize data flows 
between tables

• Discover metadata and 
quality of each table

• Access to historical 
updates

• Control operations

• Dive deep into events

31
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The Event Log

Time and current status, for all 
operations

Pipeline and cluster 
configurations

Row counts

The event log automatically records all pipelines operations.

Table schemas, definitions, and 
declared properties

Table-level lineage

Query plans used to update 
tables

Expectation pass / failure / drop 
statistics

Input/Output rows that caused 
expectation failures

Operational Statistics Provenance Data Quality

32
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How can I use 
parameters?

33
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Modularize your code with configuration
Avoid hard coding paths, topic names, and other constants in your code.

A pipeline’s configuration is a 
map of key value pairs that 
can be used to parameterize 
your code:

• Improve code 
readability/maintainability

• Reuse code in multiple 
pipelines for different data

34

CREATE STREAMING LIVE TABLE data AS
SELECT * FROM cloud_files("${my_etl.input_path}", "json")

@dlt.table
def data():
  input_path = spark.conf.get("my_etl.input_path”)
  spark.readStream.format("cloud_files”).load(input_path)
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How can I do 
change data capture 
(CDC)?

35
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APPLY CHANGES INTO for CDC
Maintain an up-to-date replica of a table stored elsewhere

APPLY CHANGES INTO LIVE.cities

FROM STREAM(LIVE.city_updates) 

KEYS (id)

SEQUENCE BY ts

36

{UPDATE}
{DELETE}
{INSERT}

APPLY
CHANGES 
INTO

Up-to-date Snapshot
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APPLY CHANGES INTO for CDC

APPLY CHANGES INTO LIVE.cities

FROM STREAM(LIVE.city_updates) 

KEYS (id)

SEQUENCE BY ts

Maintain an up-to-date replica of a table stored elsewhere

37

city_updates

{"id": 1, "ts": 1, "city": "Bekerly, CA"}

A target for the changes to 
be applied to.

id city

cities
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APPLY CHANGES INTO for CDC

APPLY CHANGES INTO LIVE.cities

FROM STREAM(LIVE.city_updates) 

KEYS (id)

SEQUENCE BY ts

Maintain an up-to-date replica of a table stored elsewhere

38

city_updates

{"id": 1, "ts": 1, "city": "Bekerly, CA"}

A source of changes, 
currently this has to be a 

stream.
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APPLY CHANGES INTO for CDC

APPLY CHANGES INTO LIVE.cities

FROM STREAM(LIVE.city_updates) 

KEYS (id)

SEQUENCE BY ts

Maintain an up-to-date replica of a table stored elsewhere

39

city_updates

{"id": 1, "ts": 1, "city": "Bekerly, CA"}

A unique key that can be 
used to identify a given row. id city

cities
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APPLY CHANGES INTO for CDC

APPLY CHANGES INTO LIVE.cities

FROM STREAM(LIVE.city_updates) 

KEYS (id)

SEQUENCE BY ts

Maintain an up-to-date replica of a table stored elsewhere

40

city_updates

{"id": 1, "ts": 100, "city": "Bekerly, CA"}

A sequence that can be used 
to order changes:
• Log sequence number (lsn)
• Timestamp
• Ingestion time

id city

cities
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APPLY CHANGES INTO for CDC

APPLY CHANGES INTO LIVE.cities

FROM STREAM(LIVE.city_updates) 

KEYS (id)

SEQUENCE BY ts

Maintain an up-to-date replica of a table stored elsewhere

41

city_updates

{"id": 1, "ts": 100, "city": "Bekerly, CA"}
{"id": 1, "ts": 200, "city": "Berkeley, CA"}

id

1

city

Bekerly, CA Berkeley, CA

cities
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Change Data Capture (CDC) from RDBMS
A variety of 3rd party tools can provide a streaming change feed

cloud_files
RDS

Amazon DMS to S3 APPLY CHANGES INTO

REFERENCE ARCHITECTURE

replicated_table 

MySQL or
Postgres

Debezium APPLY CHANGES INTO

replicated_table 

Oracle
Golden Gate APPLY CHANGES INTO

replicated_table 
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What do I no longer 
need to manage with 
DLT?

43
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Automated Data Management

What:

DLT encodes Delta best practices 
automatically when creating DLT 
tables.

How:

DLT sets the following properties:

• optimizeWrite 
• autoCompact 
• tuneFileSizesForRewrites 

DLT automatically optimizes data for performance & ease-of-use

What: 

DLT automatically manages your 
physical data to minimize cost and 
optimize performance.

How:

• runs vacuum  daily
• runs optimize daily

You still can tell us how you want it 
organized (ie ZORDER)

What:

Schema evolution is handled for you

How:

Modifying a live table transformation 
to add/remove/rename a column will 
automatically do the right thing.

When removing a column in a 
streaming live table, old values are 
preserved.

Best Practices Physical Data Schema Evolution

44
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DE 4.1 - Using the Delta 
Live Tables UI

45

Deploy a DLT pipeline

Explore the resultant DAG

Execute an update of the pipeline
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DE 4.1.1 - Fundamentals of 
DLT Syntax
Declaring Delta Live Tables

Ingesting data with Auto Loader

Using parameters in DLT Pipelines

Enforcing data quality with constraints

Adding comments to tables

Describing differences in syntax and execution of live tables and streaming live 
tables
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DE 4.1.2 - More DLT SQL 
Syntax
Processing CDC data with APPLY CHANGES INTO

Declaring live views

Joining live tables

Describing how DLT library notebooks work together in a pipeline

Scheduling multiple notebooks in a DLT pipeline
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DE 4.2 - Delta Live Tables: 
Python vs SQL
Identify key differences between the Python and SQL implementations of Delta 
Live Tables
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DE 4.3 - Exploring the 
Results of a DLT Pipeline
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DE 4.4 - Exploring the 
Pipeline Events Logs
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DE 4.1.3 - Troubleshooting 
DLT Syntax Lab
Identifying and troubleshooting DLT syntax

Iteratively developing DLT pipelines with notebooks
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