
©2023 Databricks Inc. — All rights reserved

Incremental
Processing with
Structured
Streaming
Databricks Academy
2023

©2023 Databricks Inc. — All rights reserved

Agenda
Incremental Processing with Spark Structured Streaming and Delta Lake

Lesson Name Lesson Name

Lecture: Streaming Data Concepts Lecture - Aggregations, Time Windows, Watermarks

Lecture: Introduction to Structured Streaming ADE 1.3L - Stream Aggregations Lab

ADE 1.1 - Follow Along Demo - Reading from a
Streaming Query

Lecture: Delta Live Tables Review

ADE 1.2L - Streaming Query Lab Lecture: Auto Loader

©2023 Databricks Inc. — All rights reserved

Streaming Data
Concepts

©2023 Databricks Inc. — All rights reserved

Typical data sources

What is streaming data?
Continuously generated and unbounded data

Machine &
application logsClickstreams Mobile &

IoT data
DB change data

feeds Application events

The vast majority of the data in the world is streaming data!

©2023 Databricks Inc. — All rights reserved

Stream processing is
continuous and unbounded

What is stream processing?

5

Traditional batch-oriented
data processing is one-off
and bounded.

1

Data Source

2

Processing

Data Source Processing

©2023 Databricks Inc. — All rights reserved

Stream Processing
Why is stream processing getting popular?

The vast majority of the data in the world is streaming data!

Operational
applications

Critical applications need real-time data for effective,
instantaneous response

Data Velocity &
Volumes

Rising data velocity & volumes requires continuous, incremental
processing - cannot process all data in one batch on a schedule

Real-time analytics
Businesses demand access to fresh data for actionable insights
and faster, better business decisions

©2023 Databricks Inc. — All rights reserved

Stream Processing Use Cases
Stream processing is a key component of big data applications across all
industries

Incremental ETLReal-time reporting

Online MLUpdate data to serve in
real-time

Real-time decision making

Notifications

©2023 Databricks Inc. — All rights reserved

Bounded vs. Unbounded Dataset

• Has an infinite and continuously changing
structure at the time of processing.

• The order not always sequential.
• Analogy: Vehicles on a highway

Bounded Data Unbounded Data

• Has a finite and unchanging structure at a
the time of processing.

• The order is static.
• Analogy: Vehicles in a parking lot.

©2023 Databricks Inc. — All rights reserved

Batch vs. Stream Processing
Batch Processing

• Generally refers to processing & analysis of bounded datasets (ie. size
is well known, we can count the number of elements, etc.)

• Typical of applications where there are loose data latency
requirements (ie. day old, week old, month old).

• This was traditional ETL from transactional systems into analytical
systems.

Bounded Dataset
Batch Processing
Engine

©2023 Databricks Inc. — All rights reserved

Batch Processing
Traditional data processing pipeline

DBMS, Apps,
collection agents, IoT

devices, logs

Query from Gold
tables

Move into Delta tables ETL : Clean, Transform data
into Gold tables

Ingestion (e.g.
Fivetran)

Land data in staging
files (S3, ADLS)

Batch processing on a schedule

Bounded Data
Sources

Batch Data
Ingestion

Storage Layer &
Batch Processing Engine

Query Engine

©2023 Databricks Inc. — All rights reserved

Batch vs. Stream Processing
Stream Processing

• Datasets are continuous and unbounded (data is constantly arriving,
and must be processed as long as there is new data)

• Enables low-latency use cases (ie. real-time, or near real-time)
• Provides fast, actionable insights (ie. Quality-of-Service, Device

Monitoring, Recommendations, etc.)

Stream Processing
Engine

Unbounded
dataset - Data
continuously flow

Micro-batch
(or 1-by-1)

©2023 Databricks Inc. — All rights reserved

Stream Processing
Modern data processing pipeline

DBMS / CDC, Click
Streams, App

Events/Logs, IoT
devices

Streaming data
lands in message
bus (e.g. Kafka)

Window aggregation

Pattern detection

Enrichment

Routing

Streaming Transformations

Most data is created as a series of
events over time: e.g. transactions,
sensor events, user activity on a
website

Data continuously, incrementally processed as it appears

Triggers and Alerts

Real-time analytics

Stream Data
Sources

Stream Data
Ingestion

Stream Processing Engine Data Storage
Layer

Query Engine

Structured Streaming

©2023 Databricks Inc. — All rights reserved

Stream Processing vs. Batch Processing
Similarities and differences between Stream and Batch Processing

Similarities:

• Both have data transformation

• Output of streaming job is often
queried in batch jobs

• Stream processing often include
batch processing (micro-batch)

How to process in
one run?

Batch processing
engine

Stream
processing

engine

Bounded dataset Big batch Row by row /
mini-batch

Unbounded
dataset

NA (multiple
runs)

Row by row /
mini-batch

Query
computation Only once Multiple

Differences:

©2023 Databricks Inc. — All rights reserved

Advantages of Stream Processing
Why use streaming (vs. batch) ?

A more intuitive way of
capturing and processing
continuous and unbounded
data

Lower latency for time
sensitive applications and use
cases

Better fault-tolerance
through checkpointing

Higher compute utilization
and scalability through
continuous and incremental
processing

Automatic bookkeeping on
new data

©2023 Databricks Inc. — All rights reserved

Challenges of Stream Processing
Stream processing is not easy

• Processing out-of-order data based on application
timestamps (also called event time)

• Maintaining large amounts of state
• Processing each event exactly once despite

machine failures
• Handling load imbalance and stragglers
• Determining how to update output sinks as new

events arrive
• Writing data transactionally to output systems

Structured
Streaming

SOLUTION

©2023 Databricks Inc. — All rights reserved

Introduction to
Structured Streaming

©2023 Databricks Inc. — All rights reserved

What is Structured Streaming
Apache Spark Structured Streaming Basics

• A scalable, fault-tolerant stream processing framework built on Spark
SQL engine.

• Uses existing structured APIs (DataFrames, SQL Engine) and provides
similar API as batch processing API.

• Includes stream specific features; end-to-end, exactly-once
processing, fault-tolerance etc.

©2023 Databricks Inc. — All rights reserved

How Structured Streaming Works
Incremental Updates - Data stream as an unbounded table

• Streaming data is usually coming in very fast.

• The magic behind Spark Structured Streaming: Processing infinite data
as an incremental table updates.

Color Speed Model

Unbounded Table

💡 New rows appended to a unbounded table as new data in the
stream is processed

©2023 Databricks Inc. — All rights reserved

How Structured Streaming Works
Micro-Batch Processing

Micro-batch
1 minute batches.
Processed in parallel

Continuous
Immediately process any
car reaching this point.

• Micro-batch Execution: Accumulate small batches of data and process
each batch in parallel.

• Continuous Execution (EXPERIMENTAL): Continuously listen for new
data and process them individually.

©2023 Databricks Inc. — All rights reserved

How Structured Streaming Works
Execution mode

1. An input table is defined by
configuring a streaming read against
source.

2. A query is defined against the input
table.

3. This logical query on the input table
generates the results table.

4. The output of a streaming pipeline
will persist updates to the results
table by writing to an external sink.

5. New rows are appended to the input
table for each trigger interval.

©2023 Databricks Inc. — All rights reserved

Anatomy of a Streaming Query
Structured Streaming Core Concepts

• Example:
• Read JSON data from Kafka
• Parse nested JSON
• Store in structured Delta Lake table

• Core concepts:
• Input sources
• Sinks
• Transformations & actions
• Triggers

Data Sources

Storage Layer

Transform
ations

&
 A

ctions

©2023 Databricks Inc. — All rights reserved

Anatomy of a Streaming Query
Structured Streaming Core Concepts

spark.readStream.format("kafka")

 .option("kafka.bootstrap.servers",...)

 .option("subscribe", "topic")

 .load()

Returns a Spark DataFrame
(common API for batch & streaming data)

Source:
• Specify where to read data from

• OS Spark supports Kafka and file sources

• Databricks runtimes include connector
libraries supporting Delta, Event Hubs, and
Kinesis

spark.readStream.format(<source>)
.option(<>,<>)...
.load()

©2023 Databricks Inc. — All rights reserved

Anatomy of a Streaming Query
Structured Streaming Core Concepts

spark.readStream.format("kafka")

 .option("kafka.bootstrap.servers",...)

 .option("subscribe", "topic")

 .load()

 .selectExpr("cast (value as string) as json")
 .select(from_json("json", schema).as("data"))

Transformations:
• 100s of built-in, optimized SQL functions

like from_json

• In this example, cast bytes from Kafka
records to a string, parse it as JSON, and
generate nested columns

©2023 Databricks Inc. — All rights reserved

Anatomy of a Streaming Query
Structured Streaming Core Concepts

spark.readStream.format("kafka")

 .option("kafka.bootstrap.servers",...)

 .option("subscribe", "topic")

 .load()

 .selectExpr("cast (value as string) as json")
 .select(from_json("json", schema).as("data"))

 .writeStream
 .format("delta")
 .option("path", "/deltaTable/")

Sink: Write transformed output to
external storage systems

Databricks runtimes include
connector library supporting Delta

OS Spark supports:
• Files and Kafka for production

• Console and memory for development
and debugging

• foreachBatch to execute arbitrary
code with the output data

©2023 Databricks Inc. — All rights reserved

• Checkpoint location: For tracking the
progress of the query

• Output Mode: Defines how the data
is written to the sink; Equivalent to
“save” mode on static DataFrames

• Trigger: Defines how frequently the
input table is checked for new data;
Each time a trigger fires, Sparks check
for new data and updates the results

Anatomy of a Streaming Query
Structured Streaming Core Concepts

spark.readStream.format("kafka")

 .option("kafka.bootstrap.servers",...)

 .option("subscribe", "topic")

 .load()

 .selectExpr("cast (value as string) as json")
 .select(from_json("json", schema).as("data"))

 .writeStream
 .format("delta")
 .option("path", "/deltaTable/")

 .trigger("1 minute")

 .option("checkpointLocation", "…")

 .start()

©2023 Databricks Inc. — All rights reserved

Anatomy of a Streaming Query
Structured Streaming Core Concepts

Trigger Types:

Fixed interval micro
batches

.trigger(processingTime =
“2 minutes”)

Micro-batch processing kicked off at the user-specified
interval

Triggered One-time
micro batch

.trigger(once=True)
Process all of the available data as a single micro-batch and
then automatically stop the query

Triggered One-time
micro batches

.trigger(availableNow=True)
Process all of the available data as multiple micro-batches
and then automatically stop the query

Continuous
Processing

.trigger(continuous= “2
seconds”)

Long-running tasks that continuously read, process, and write
data as soon events are available, with checkpoints at the
specified frequency

Default
Databricks: 500ms fixed interval
OS Apache Spark: Process each microbatch as soon as the
previous has been processed

©2023 Databricks Inc. — All rights reserved

Anatomy of a Streaming Query
Structured Streaming Core Concepts

spark.readStream.format("kafka")

 .option("kafka.bootstrap.servers",...)

 .option("subscribe", "topic")

 .load()

 .selectExpr("cast (value as string) as json")
 .select(from_json("json", schema).as("data"))

 .writeStream
 .format("delta")
 .option("path", "/deltaTable/")

 .trigger("1 minute")

 .option("checkpointLocation", "…")

 .outputMode("complete")

 .start()

Output Mode:

• Defines how the data is written to the
sink

• Equivalent to “save” mode on static
DataFrames

©2023 Databricks Inc. — All rights reserved

Anatomy of a Streaming Query
Structured Streaming Core Concepts

Output Modes:

Complete
● The entire updated Result Table is written to the sink.
● The individual sink implementation decides how to handle writing the

entire table.

Append Only the new rows appended to the Result Table since the last trigger are
written to the sink.

Update Only new rows and the rows in the Result Table that were updated since
the last trigger will be outputted to the sink.

Note: The output modes supported depends on the type of
transformations and sinks used by the streaming query. Refer to the the
Structured Streaming Programming Guide for details.

https://www.google.com/url?q=https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html&sa=D&source=editors&ust=1704416399255885&usg=AOvVaw1QlyQh3gCrdzlqOBA-2bHE

©2023 Databricks Inc. — All rights reserved

Anatomy of a Streaming Query
Structured Streaming Core Concepts

spark.readStream.format("kafka")

 .option("kafka.bootstrap.servers",...)

 .option("subscribe", "topic")

 .load()

 .selectExpr("cast (value as string) as json")
 .select(from_json("json", schema).as("data"))

 .writeStream
 .format("delta")
 .option("path", "/deltaTable/")

 .trigger("1 minute")

 .option("checkpointLocation", "…")

 .outputMode("append")

 .start()

Raw data from Kafka
available as structured
data in seconds, ready for
querying

©2023 Databricks Inc. — All rights reserved

Benefits of Structured
Streaming

©2023 Databricks Inc. — All rights reserved

Unification
Unified API for Batch and Stream Processing

• Same API is used for batch and stream processing.

• Supports Python, SQL or Spark’s other supported languages.

• Spark’s built-in libraries can be called in a streaming context, including
ML libraries.

Note: Most operations on a streaming DataFrame are identical to a static
DataFrame. There are some exceptions to this, for example, sorting is not
supported with streaming data.

©2023 Databricks Inc. — All rights reserved

Fault Tolerance
End-to-end fault tolerance

• Structured Streaming ensures end-to-end exactly-once fault-tolerance
guarantees through checkpointing.

• In case of failures; the streaming engine attempts to restart and/or
reprocess the data.

• This approach requires;

• Replayable streaming source such as cloud-based object storage and pub/sub
services.

• Idempotent sinks - multiple writes of the same data (as identified by the offset) do
not result in duplicates being written to the sink.

©2023 Databricks Inc. — All rights reserved

Handle Out-of-Order Data
Support for “event time” to aggregate out of order data

• Supports event-time-window-based aggregation queries

• Supports watermarking which allows users to the threshold of late data

©2023 Databricks Inc. — All rights reserved

Structured Streaming
with Delta Lake

©2023 Databricks Inc. — All rights reserved

Delta Lake Benefits
An open format storage layer built for the lakehouse architecture

Reliability
• ACID transactions

• Schema
Enforcement &
Evolution

• Rollbacks

• Time travel

Performance
• Advanced indexing

with Z-order

• Caching

• Auto tuning of
storage block sizes

• Data skipping

Governance
• Integrated with

data catalog
• Audit history
• GDPR and CCPA

compliance

• Data
Pseudonymization

Flexibility
• Open format built

on Parquet
• Streaming + Batch

• Unstructured
data types

• Easy replication with
Delta Clones

Extensibility

Streaming DataFrame API — Open file access — SQL API — Python API

©2023 Databricks Inc. — All rights reserved

• Each committed version represents new data to stream. Delta Lake
transactions logs identify the version’s new data files

• Structured Streaming assumes append-only sources. Any non-append
changes to a Delta table causes queries streaming from that table to
throw exceptions.

• Set delta.appendOnly = true to prevent non-append
modifications to a table.

• Use Delta Lake change data feed to propagate arbitrary change events
to downstream consumers (discussed later in this course).

Streaming from Delta Lake
Using a Delta table as a streaming source

https://www.google.com/url?q=https://docs.databricks.com/delta/delta-change-data-feed.html&sa=D&source=editors&ust=1704416400059501&usg=AOvVaw2igcbG_nJlNRfnbzAjMedL

©2023 Databricks Inc. — All rights reserved

Streaming from Delta Lake
Using a Delta table as a streaming source

• You can limit the input rate for micro-batches by setting
DataStreamReader options:

• maxFilesPerTrigger: Maximum files read per micro-batch (default 1,000)

• maxBytesPerTrigger: Soft limit to amount of data read per micro-batch (no
default)

• Note: Delta Live Tables pipelines auto-tune options for rate limiting, so you
should avoid setting these options explicitly for your pipelines.

https://www.google.com/url?q=https://docs.databricks.com/structured-streaming/delta-lake.html%23limit-input-rate&sa=D&source=editors&ust=1704416400070347&usg=AOvVaw1LvMzmItGXuCl-7BZVZFNw

©2023 Databricks Inc. — All rights reserved

Streaming to Delta Lake
Using a Delta table as a streaming sink

• Each micro-batch written to the Delta table is committed as a new
version.

• Delta Lake supports both append and complete output modes.
• Append is most common.
• Complete replaces the entire table with each micro-batch. It can be used for

streaming queries that perform arbitrary aggregations on streaming data.

©2023 Databricks Inc. — All rights reserved

Demo: Reading from a
Streaming Query

©2023 Databricks Inc. — All rights reserved

Lab: Streaming Query

©2023 Databricks Inc. — All rights reserved

Aggregations, Time
Windows, Watermarks

©2023 Databricks Inc. — All rights reserved

Types of Stream Processing
Stateless vs. Stateful Processing

• Stateless
• Typically trivial transformations. The way records are handled do

not depend on previously seen records.
• Example: Data Ingest (map-only), simple dimensional joins

• Stateful
• Previously seen records can influence new records
• Example: Aggregations over time, Fraud/Anomaly Detection

©2023 Databricks Inc. — All rights reserved

Stream Aggregations

What is the total number of passengers by
vehicle color?

©2023 Databricks Inc. — All rights reserved

Stream Aggregations

• Continuous applications often require near real-time decisions on
real-time, aggregated statistics

• Examples: Aggregating errors from IoT devices, behavior analysis on instant
messages via hashtags

• In the case of streams, you generally don't want to run aggregations
over the entire dataset. Why;

• There conceptually is no end to the flow of data, data is continuous

• The size of the dataset grows in perpetuity; will eventually run out of resources

• Solution: Instead of aggregating over the entire dataset, we can aggregate over data
grouped by windows of time (say, every 5 minutes). This is referred to as windowing.

©2023 Databricks Inc. — All rights reserved

Time Based Windows
Tumbling window vs. Sliding window

• No window overlap

• Any given event gets aggregated
into only one window group (e.g.
1:00–2:00 am, 2:00–3:00 am,
3:00-4:00 am, …)

• Windows overlap
• Any given event gets aggregated

into multiple window groups (e.g.
1:00-2:00 am, 1:30–2:30 am,
2:00–3:00 am, …)

Tumbling Window Sliding Window

©2023 Databricks Inc. — All rights reserved

Time Based Windows
Sliding window example

©2023 Databricks Inc. — All rights reserved

Reasoning About Time

What is the average vehicle speed by color?

©2023 Databricks Inc. — All rights reserved

Reasoning About Time
Event time vs. Processing time

What is the total number of passengers by
vehicle color?

Processing Time
Event Time (Speed
check Starting point)

©2023 Databricks Inc. — All rights reserved

Reasoning About Time
Event time vs. Processing time

Event time vs. processing time

• Event Time: time at which the event (record in the data) actually
occurred.

• Processing time: time at which a record is actually processed.
• Important in every use case processing unbounded data in whatever

order (otherwise no guarantee on correctness)

©2023 Databricks Inc. — All rights reserved

Time Domain Skew
Time in batch vs. stream processing

When batch processing:
• Processing time per definition much later

(e.g. an hour or day) than event time
• Data assumed to be complete (or settle for

incompleteness)

When stream processing:
• Processing time >= event time but often

close (e.g. seconds, minutes)
• Challenge when processing time >>> event

time (late data): not able to conclude anything
easily, how long to wait for the data to be
complete?

©2023 Databricks Inc. — All rights reserved

Reasoning About Time

Let’s say using 5 minute windowing, what if a vehicle is very slow?
Do we need to wait for it?

What is the total number of passengers by
vehicle color?

Processing Time
Event Time (Speed
check Starting point)

Every vehicle’s speed is
recorded and sent to
processing point

©2023 Databricks Inc. — All rights reserved

Reasoning About Time
Handling Late Data and Watermarking

Watermark: Handle late data and limit how long to remember old data

• Analogy: Highway minimum speed limit

©2023 Databricks Inc. — All rights reserved

ADE 1.3L - Streaming
Aggregation

©2023 Databricks Inc. — All rights reserved

Delta Live Tables
Review

54

©2023 Databricks Inc. — All rights reserved

Multi-Hop in Databricks

CSV
JSON
TXT

Bronze Silver Gold

AI and reporting

Streaming
analytics

Data quality

Databricks Auto
Loader Raw Ingestion and

History
Filtered, Cleaned,

Augmented
Business-level

Aggregates

©2023 Databricks Inc. — All rights reserved

The Reality is Not so Simple

Bronze Silver Gold

©2023 Databricks Inc. — All rights reserved

Large scale ETL is complex and brittle

Hard to build and maintain table
dependencies

Difficult to switch between batch
and stream processing

Difficult to monitor and enforce
data quality

Impossible to trace data lineage

Poor observability at granular,
data level

Error handling and recovery is
laborious

Complex pipeline
development

Data quality and
governance

Difficult pipeline
operations

57

©2023 Databricks Inc. — All rights reserved

Introducing Delta Live Tables
Make reliable ETL easy on Delta Lake

58

Operate with agility

Declarative tools to
build batch and
streaming data
pipelines

Trust your data

DLT has built-in
declarative quality
controls

Declare quality
expectations and
actions to take

Scale with reliability

Easily scale
infrastructure
alongside your data

©2023 Databricks Inc. — All rights reserved

Delta Live Tables
Streaming data ingestion and transformation made simple

59

Unify batch and streaming
Get the simplicity of SQL with the freshness of
streaming with one unified API

Ensure high data quality
Deliver reliable data with built-in quality controls,
testing, monitoring and enforcement

Automatically manage your infrastructure
Automates complex tedious activities like recovery,
auto-scaling, and performance optimization

Accelerate ETL development
Declare SQL/Python and DLT automatically
orchestrates the DAG, handles retries, changing data

CREATE LIVE TABLE clean_data
AS SELECT …
FROM LIVE.raw_data

CREATE STREAMING TABLE raw_data
AS SELECT *
FROM cloud_files(“/raw_data”,
”json”)

©2023 Databricks Inc. — All rights reserved

What is a Live Table?

A live table is:

• Defined by a SQL query

• Created and kept up-to-date by a
pipeline

Live tables provides tools to:

• Manage dependencies

• Control quality

• Automate operations

• Simplify collaboration

• Save costs

• Reduce latency

Live Tables are materialized views for the data intelligence platform.

60

CREATE OR REFRESH TABLE report

AS SELECT sum(profit)

FROM prod.sales

LIVE

©2023 Databricks Inc. — All rights reserved

What is a Streaming Live Table?

A streaming live table is “stateful”:

• Ensures exactly-once processing of
input rows

• Inputs are only read once

• Streaming Live tables compute results
over append-only streams such as
Kafka, Kinesis, or Auto Loader (files on
cloud storage)

• Streaming live tables allow you to reduce
costs and latency by avoiding
reprocessing of old data.

Based on SparkTM Structured Streaming

61

CREATE STREAMING LIVE TABLE report

AS SELECT sum(profit)

FROM cloud_files(prod.sales)

©2023 Databricks Inc. — All rights reserved 62

Creating Your First Live Table Pipeline
SQL to DLT in three easy steps…

Write create live table Create a pipeline Click start

• Table definitions are written
(but not run) in notebooks

• Databricks Repos allow you
to version control your table
definitions.

• A Pipeline picks one or more
notebooks of table
definitions, as well as any
configuration required.

• DLT will create or update all
the tables in the pipelines.

©2023 Databricks Inc. — All rights reserved

Development vs Production
Fast iteration or enterprise grade reliability

• Reuses a long-running cluster
running for fast iteration.

• No retries on errors enabling
faster debugging.

• Cuts costs by turning off
clusters as soon as they are done
(within 5 minutes)

• Escalating retries, including
cluster restarts, ensure reliability
in the face of transient issues.

Development Mode Production Mode

63

In the Pipelines
UI:

BEST PRACTICE

©2023 Databricks Inc. — All rights reserved

Auto Loader

64

©2023 Databricks Inc. — All rights reserved

Auto Loader Benefits

Highly Scalable

Discover billions
of files efficiently

Highly
Performant

Optimized file
discovery with the

directory listing
mode

Cost Effective

Avoid costly LIST
operations with

the file notification
mode

Schema Inference
& Evolution

Detect schema
drifts and rescue

data automatically

©2023 Databricks Inc. — All rights reserved

Auto Loader Under the Hood
.option(“cloudFiles.useNotifications”,“true”)

https://www.google.com/url?q=https://lucid.app/documents/edit/ba16c115-4d3c-4356-ae65-0a332884f470/0?callback%3Dclose%26name%3Dslides%26callback_type%3Dback%26v%3D987%26s%3D765.8187507874015&sa=D&source=editors&ust=1704416407066031&usg=AOvVaw2ciyW2n__wJAhPBZYM7tQP

©2023 Databricks Inc. — All rights reserved

● Leverage incremental listing for directory listing mode

○ Files must be lexicographically ordered

○ Determination is automatic

■ cloudFiles.useIncrementalListing = “auto” is default

○ DBR 9.1+

○ Use file notification mode If incremental listing is not possible

● Consider processing delays while configuring lifecycle policies on object
storage services

Auto Loader Best Practices

67

©2023 Databricks Inc. — All rights reserved

Knowledge Check

©2023 Databricks Inc. — All rights reserved

Which of the following could be used as sources in a
stream processing pipeline?

Select two responses

A. change data capture (CDC) feed
B. Kafka
C. Delta Lake
D. IoT devices

©2023 Databricks Inc. — All rights reserved

Which of the following statements about propagating deletes with change
data feed (CDF) are true?
Select two responses

A. Deletes cannot be processed at the same time as
appends and updates.

B. Commit messages can be specified as part of the
write options using the userMetadata option.

C. Deleting data will create new data files rather than
deleting existing data files.

D. In order to propagate deletes to a table, a MERGE
statement is required in SQL.

©2023 Databricks Inc. — All rights reserved

Which of the following are considerations to keep in mind
when choosing between micro-batch and continuous
execution mode?

Select two responses.

A. Desired latency
B. Total cost of operation (TCO)
C. Maximum throughput
D. Cloud object storage

©2023 Databricks Inc. — All rights reserved

Which of the following functions completes the following
code snippet to return a Spark DataFrame in a structured
streaming query?

spark.readStream.format("kafka")
 .option("kafka.bootstrap.servers",...)
 .option("subscribe", "topic")

Select one response.
A. .load()
B. .print()
C. .return()
D. .merge()

©2023 Databricks Inc. — All rights reserved

In stream processing, datasets are _____.

Select one response

A. continuous and bounded
B. continuous and unbounded
C. micro-batch and unbounded
D. micro-batch and bounded

