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Agenda
Incremental Processing with Spark Structured Streaming and Delta Lake

Lesson Name Lesson Name

Lecture: Streaming Data Concepts Lecture - Aggregations, Time Windows, Watermarks

Lecture: Introduction to Structured Streaming ADE 1.3L - Stream Aggregations Lab

ADE 1.1 - Follow Along Demo - Reading from a 
Streaming Query

Lecture: Delta Live Tables Review

ADE 1.2L - Streaming Query Lab Lecture: Auto Loader
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Streaming Data 
Concepts
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Typical data sources

What is streaming data?
Continuously generated and unbounded data

Machine & 
application logsClickstreams Mobile &

IoT data
DB change data 

feeds Application events

The vast majority of the data in the world is streaming data!
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Stream processing is 
continuous and unbounded

What is stream processing?

5

Traditional batch-oriented 
data processing is one-off 
and bounded.

1

Data Source

2

Processing

Data Source Processing
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Stream Processing
Why is stream processing getting popular?

The vast majority of the data in the world is streaming data!

Operational 
applications

Critical applications need real-time data for effective, 
instantaneous response 

Data Velocity & 
Volumes

Rising data velocity & volumes requires continuous, incremental 
processing - cannot process all data in one batch on a schedule

Real-time analytics
Businesses demand access to fresh data for actionable insights 
and faster, better business decisions
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Stream Processing Use Cases
Stream processing is a key component of big data applications across all 
industries

Incremental ETLReal-time reporting

Online MLUpdate data to serve in 
real-time

Real-time decision making

Notifications
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Bounded vs. Unbounded Dataset

• Has an infinite and continuously changing 
structure at the time of processing.

• The order not always sequential.
• Analogy: Vehicles on a highway  

Bounded Data Unbounded Data

• Has a finite and unchanging structure at a 
the time of processing.

• The order is static.
• Analogy: Vehicles in a parking lot.
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Batch vs. Stream Processing
Batch Processing

• Generally refers to processing & analysis of bounded datasets (ie. size 
is well known, we can count the number of elements, etc.)

• Typical of applications where there are loose data latency 
requirements (ie. day old, week old, month old).

• This was traditional ETL from transactional systems into analytical 
systems.

Bounded Dataset
Batch Processing 
Engine
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Batch Processing
Traditional data processing pipeline

DBMS, Apps, 
collection agents, IoT 

devices, logs

Query from Gold 
tables

Move into Delta tables ETL : Clean, Transform data 
into Gold tables

Ingestion (e.g. 
Fivetran)

Land data in staging 
files (S3, ADLS)

Batch processing on a schedule

Bounded Data 
Sources

Batch Data 
Ingestion

Storage Layer &
Batch Processing Engine

Query Engine
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Batch vs. Stream Processing
Stream Processing

• Datasets are continuous and unbounded (data is constantly arriving, 
and must be processed as long as there is new data)

• Enables low-latency use cases (ie. real-time, or near real-time)
• Provides fast, actionable insights (ie. Quality-of-Service, Device 

Monitoring, Recommendations, etc.)

Stream Processing 
Engine

Unbounded 
dataset - Data 
continuously flow

Micro-batch 
(or 1-by-1) 
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Stream Processing
Modern data processing pipeline

DBMS / CDC, Click 
Streams, App 

Events/Logs, IoT 
devices

Streaming data 
lands in message 
bus (e.g. Kafka)

Window aggregation

Pattern detection

Enrichment

Routing

Streaming Transformations

Most data is created as a series of 
events over time: e.g. transactions, 
sensor events, user activity on a 
website

Data continuously, incrementally processed as it appears

Triggers and Alerts

Real-time analytics

Stream Data 
Sources

Stream Data 
Ingestion

Stream Processing Engine Data Storage 
Layer

Query Engine

Structured Streaming
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Stream Processing vs. Batch Processing
Similarities and differences between Stream and Batch Processing

Similarities:

• Both have data transformation

• Output of streaming job is often 
queried in batch jobs

• Stream processing often include 
batch processing (micro-batch)

How to process in 
one run?

Batch processing 
engine

Stream 
processing 

engine

Bounded dataset Big batch Row by row / 
mini-batch

Unbounded 
dataset

NA (multiple 
runs)

Row by row / 
mini-batch

Query 
computation Only once Multiple

Differences:
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Advantages of Stream Processing
Why use streaming (vs. batch) ?

A more intuitive way of 
capturing and processing 
continuous and unbounded 
data

Lower latency for time 
sensitive applications and use 
cases 

Better fault-tolerance 
through checkpointing

Higher compute utilization 
and scalability through 
continuous and incremental 
processing 

Automatic bookkeeping on 
new data
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Challenges of Stream Processing
Stream processing is not easy

• Processing out-of-order data based on application 
timestamps (also called event time)

• Maintaining large amounts of state
• Processing each event exactly once despite 

machine failures
• Handling load imbalance and stragglers
• Determining how to update output sinks as new 

events arrive
• Writing data transactionally to output systems

Structured 
Streaming

SOLUTION
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Introduction to 
Structured Streaming
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What is Structured Streaming
Apache Spark Structured Streaming Basics

• A scalable, fault-tolerant stream processing framework built on Spark 
SQL engine. 

• Uses existing structured APIs (DataFrames, SQL Engine) and provides 
similar API as batch processing API.

• Includes stream specific features; end-to-end, exactly-once 
processing, fault-tolerance etc.
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How Structured Streaming Works
Incremental Updates - Data stream as an unbounded table

• Streaming data is usually coming in very fast. 

• The magic behind Spark Structured Streaming: Processing infinite data 
as an incremental table updates.

Color Speed Model

Unbounded Table

💡 New rows appended to a unbounded table as new data in the 
stream is processed
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How Structured Streaming Works
Micro-Batch Processing

Micro-batch
1 minute batches. 
Processed in parallel 

Continuous
Immediately process any 
car reaching this point.

• Micro-batch Execution: Accumulate small batches of data and process 
each batch in parallel. 

• Continuous Execution (EXPERIMENTAL): Continuously listen for new 
data and process them individually.
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How Structured Streaming Works
Execution mode

1. An input table is defined by 
configuring a streaming read against 
source.

2. A query is defined against the input 
table.

3. This logical query on the input table 
generates the results table.

4. The output of a streaming pipeline 
will persist updates to the results 
table by writing to an external sink.

5. New rows are appended to the input 
table for each trigger interval.
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Anatomy of a Streaming Query
Structured Streaming Core Concepts

• Example:
• Read JSON data from Kafka
• Parse nested JSON 
• Store in structured Delta Lake table

• Core concepts: 
• Input sources
• Sinks
• Transformations & actions
• Triggers

Data Sources

Storage Layer

Transform
ations 

&
 A

ctions
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Anatomy of a Streaming Query
Structured Streaming Core Concepts

spark.readStream.format("kafka")

  .option("kafka.bootstrap.servers",...)

  .option("subscribe", "topic")

  .load()

Returns a Spark DataFrame
(common API for batch & streaming data)

Source:
• Specify where to read data from

• OS Spark supports Kafka and file sources

• Databricks runtimes include connector 
libraries supporting Delta, Event Hubs, and 
Kinesis

spark.readStream.format(<source>)
.option(<>,<>)...
.load()
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Anatomy of a Streaming Query
Structured Streaming Core Concepts

spark.readStream.format("kafka")

  .option("kafka.bootstrap.servers",...)

  .option("subscribe", "topic")

  .load()

  .selectExpr("cast (value as string) as json")
  .select(from_json("json", schema).as("data"))

Transformations:
• 100s of built-in, optimized SQL functions 

like from_json

• In this example, cast bytes from Kafka 
records to a string, parse it as JSON, and 
generate nested columns
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Anatomy of a Streaming Query
Structured Streaming Core Concepts

spark.readStream.format("kafka")

  .option("kafka.bootstrap.servers",...)

  .option("subscribe", "topic")

  .load()

  .selectExpr("cast (value as string) as json")
  .select(from_json("json", schema).as("data"))

  .writeStream
  .format("delta")
  .option("path", "/deltaTable/")

Sink: Write transformed output to 
external storage systems

Databricks runtimes include 
connector library supporting Delta

OS Spark supports:
• Files and Kafka for production

• Console and memory for development 
and debugging

• foreachBatch to execute arbitrary 
code with the output data
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• Checkpoint location: For tracking the 
progress of the query

• Output Mode: Defines how the data 
is written to the sink; Equivalent to 
“save” mode on static DataFrames

• Trigger: Defines how frequently the 
input table is checked for new data; 
Each time a trigger fires, Sparks check 
for new data and updates the results

Anatomy of a Streaming Query
Structured Streaming Core Concepts

spark.readStream.format("kafka")

  .option("kafka.bootstrap.servers",...)

  .option("subscribe", "topic")

  .load()

  .selectExpr("cast (value as string) as json")
  .select(from_json("json", schema).as("data"))

  .writeStream
  .format("delta")
  .option("path", "/deltaTable/")

  .trigger("1 minute")

  .option("checkpointLocation", "…")

  .start()



©2023 Databricks Inc. — All rights reserved

Anatomy of a Streaming Query
Structured Streaming Core Concepts

Trigger Types:

Fixed interval micro 
batches

.trigger(processingTime = 
“2 minutes”)

Micro-batch processing kicked off at the user-specified 
interval

Triggered One-time 
micro batch

.trigger(once=True)
Process all of the available data as a single micro-batch and 
then automatically stop the query

Triggered One-time 
micro batches

.trigger(availableNow=True)
Process all of the available data as multiple micro-batches 
and then automatically stop the query

Continuous 
Processing

.trigger(continuous= “2 
seconds”)

Long-running tasks that continuously read, process, and write 
data as soon events are available, with checkpoints at the 
specified frequency

Default
Databricks: 500ms fixed interval
OS Apache Spark: Process each microbatch as soon as the 
previous has been processed
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Anatomy of a Streaming Query
Structured Streaming Core Concepts

spark.readStream.format("kafka")

  .option("kafka.bootstrap.servers",...)

  .option("subscribe", "topic")

  .load()

  .selectExpr("cast (value as string) as json")
  .select(from_json("json", schema).as("data"))

  .writeStream
  .format("delta")
  .option("path", "/deltaTable/")

  .trigger("1 minute")

  .option("checkpointLocation", "…")

  .outputMode("complete")

  .start()

Output Mode:

• Defines how the data is written to the 
sink

• Equivalent to “save” mode on static 
DataFrames
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Anatomy of a Streaming Query
Structured Streaming Core Concepts

Output Modes:

Complete
● The entire updated Result Table is written to the sink.
● The individual sink implementation decides how to handle writing the 

entire table.

Append Only the new rows appended to the Result Table since the last trigger are 
written to the sink.

Update Only new rows and the rows in the Result Table that were updated since 
the last trigger will be outputted to the sink.

Note: The output modes supported depends on the type of 
transformations and sinks used by the streaming query. Refer to the the 
Structured Streaming Programming Guide for details.

https://www.google.com/url?q=https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html&sa=D&source=editors&ust=1704416399255885&usg=AOvVaw1QlyQh3gCrdzlqOBA-2bHE
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Anatomy of a Streaming Query
Structured Streaming Core Concepts

spark.readStream.format("kafka")

  .option("kafka.bootstrap.servers",...)

  .option("subscribe", "topic")

  .load()

  .selectExpr("cast (value as string) as json")
  .select(from_json("json", schema).as("data"))

  .writeStream
  .format("delta")
  .option("path", "/deltaTable/")

  .trigger("1 minute")

  .option("checkpointLocation", "…")

  .outputMode("append")

  .start()

Raw data from Kafka 
available as structured 
data in seconds, ready for 
querying
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Benefits of Structured 
Streaming
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Unification
Unified API for Batch and Stream Processing

• Same API is used for batch and stream processing.

• Supports Python, SQL or Spark’s other supported languages.

• Spark’s built-in libraries can be called in a streaming context, including 
ML libraries.

Note: Most operations on a streaming DataFrame are identical to a static 
DataFrame. There are some exceptions to this, for example, sorting is not 
supported with streaming data.
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Fault Tolerance
End-to-end fault tolerance

• Structured Streaming ensures end-to-end exactly-once fault-tolerance 
guarantees through checkpointing.

• In case of failures; the streaming engine attempts to restart and/or 
reprocess the data.

• This approach requires;

• Replayable streaming source such as cloud-based object storage and pub/sub 
services.

• Idempotent sinks - multiple writes of the same data (as identified by the offset) do 
not result in duplicates being written to the sink.
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Handle Out-of-Order Data
Support for “event time” to aggregate out of order data

• Supports event-time-window-based aggregation queries 

• Supports watermarking which allows users to the threshold of late data
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Structured Streaming 
with Delta Lake
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Delta Lake Benefits
An open format storage layer built for the lakehouse architecture

Reliability
• ACID transactions

• Schema 
Enforcement & 
Evolution

• Rollbacks

• Time travel

Performance
• Advanced indexing 

with Z-order

• Caching

• Auto tuning of 
storage block sizes

• Data skipping

Governance
• Integrated with 

data catalog
• Audit history
• GDPR and CCPA 

compliance

• Data 
Pseudonymization

Flexibility
• Open format built 

on Parquet
• Streaming + Batch

• Unstructured 
data types 

• Easy replication with 
Delta Clones

Extensibility

Streaming DataFrame API — Open file access — SQL API — Python API
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• Each committed version represents new data to stream. Delta Lake 
transactions logs identify the version’s new data files

• Structured Streaming assumes append-only sources. Any non-append 
changes to a Delta table causes queries streaming from that table to 
throw exceptions.

• Set delta.appendOnly = true to prevent non-append 
modifications to a table.

• Use Delta Lake change data feed to propagate arbitrary change events 
to downstream consumers (discussed later in this course).

Streaming from Delta Lake
Using a Delta table as a streaming source

https://www.google.com/url?q=https://docs.databricks.com/delta/delta-change-data-feed.html&sa=D&source=editors&ust=1704416400059501&usg=AOvVaw2igcbG_nJlNRfnbzAjMedL
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Streaming from Delta Lake
Using a Delta table as a streaming source

• You can limit the input rate for micro-batches by setting 
DataStreamReader options:

• maxFilesPerTrigger: Maximum files read per micro-batch (default 1,000)

• maxBytesPerTrigger: Soft limit to amount of data read per micro-batch (no 
default)

• Note: Delta Live Tables pipelines auto-tune options for rate limiting, so you 
should avoid setting these options explicitly for your pipelines.

https://www.google.com/url?q=https://docs.databricks.com/structured-streaming/delta-lake.html%23limit-input-rate&sa=D&source=editors&ust=1704416400070347&usg=AOvVaw1LvMzmItGXuCl-7BZVZFNw
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Streaming to Delta Lake
Using a Delta table as a streaming sink

• Each micro-batch written to the Delta table is committed as a new 
version.

• Delta Lake supports both append and complete output modes.
• Append is most common.
• Complete replaces the entire table with each micro-batch. It can be used for 

streaming queries that perform arbitrary aggregations on streaming data.
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Demo: Reading from a 
Streaming Query
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Lab: Streaming Query
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Aggregations, Time 
Windows, Watermarks
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Types of Stream Processing
Stateless vs. Stateful Processing

• Stateless
• Typically trivial transformations. The way records are handled do 

not depend on previously seen records.
• Example: Data Ingest (map-only), simple dimensional joins

• Stateful
• Previously seen records can influence new records
• Example: Aggregations over time, Fraud/Anomaly Detection
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Stream Aggregations

What is the total number of passengers by 
vehicle color?
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Stream Aggregations

• Continuous applications often require near real-time decisions on 
real-time, aggregated statistics

• Examples: Aggregating errors from IoT devices, behavior analysis on instant 
messages via hashtags

• In the case of streams, you generally don't want to run aggregations 
over the entire dataset. Why;

• There conceptually is no end to the flow of data, data is continuous

• The size of the dataset grows in perpetuity; will eventually run out of resources

• Solution: Instead of aggregating over the entire dataset, we can aggregate over data 
grouped by windows of time (say, every 5 minutes). This is referred to as windowing.
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Time Based Windows
Tumbling window vs. Sliding window

• No window overlap

• Any given event gets aggregated 
into only one window group (e.g. 
1:00–2:00 am, 2:00–3:00 am, 
3:00-4:00 am, …)

• Windows overlap
• Any given event gets aggregated 

into multiple window groups (e.g. 
1:00-2:00 am, 1:30–2:30 am, 
2:00–3:00 am, …)

Tumbling Window Sliding Window
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Time Based Windows
Sliding window example
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Reasoning About Time

What is the average vehicle speed by color? 
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Reasoning About Time
Event time vs. Processing time

What is the total number of passengers by 
vehicle color?

Processing Time
Event Time (Speed 
check Starting point)
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Reasoning About Time
Event time vs. Processing time

Event time vs. processing time

• Event Time: time at which the event (record in the data) actually 
occurred.

• Processing time: time at which a record is actually processed.
• Important in every use case processing unbounded data in whatever 

order (otherwise no guarantee on correctness)
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Time Domain Skew
Time in batch vs. stream processing 

When batch processing:
• Processing time per definition much later 

(e.g. an hour or day) than event time
• Data assumed to be complete (or settle for 

incompleteness)

When stream processing:
• Processing time >= event time but often 

close (e.g. seconds, minutes)
• Challenge when processing time >>> event 

time (late data): not able to conclude anything 
easily, how long to wait for the data to be 
complete?
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Reasoning About Time

Let’s say using 5 minute windowing, what if a vehicle is very slow? 
Do we need to wait for it?  

What is the total number of passengers by 
vehicle color?

Processing Time
Event Time (Speed 
check Starting point)

Every vehicle’s speed is 
recorded and sent to 
processing point
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Reasoning About Time
Handling Late Data and Watermarking

Watermark: Handle late data and limit how long to remember old data

• Analogy: Highway minimum speed limit 
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ADE 1.3L - Streaming 
Aggregation
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Delta Live Tables 
Review

54
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Multi-Hop in Databricks

CSV
JSON
TXT

Bronze Silver Gold

AI and reporting

Streaming 
analytics

Data quality

Databricks Auto 
Loader Raw Ingestion and 

History
Filtered, Cleaned, 

Augmented
Business-level 

Aggregates
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The Reality is Not so Simple

Bronze Silver Gold
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Large scale ETL is complex and brittle

Hard to build and maintain table 
dependencies

Difficult to switch between batch 
and stream processing

Difficult to monitor and enforce 
data quality

Impossible to trace data lineage

Poor observability at granular, 
data level

Error handling and recovery is 
laborious

Complex pipeline 
development

Data quality and 
governance

Difficult pipeline 
operations

57
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Introducing Delta Live Tables 
Make reliable ETL easy on Delta Lake

58

Operate with agility

Declarative tools to 
build batch and 
streaming data 
pipelines 

Trust your data

DLT has built-in 
declarative quality 
controls

Declare quality 
expectations and 
actions to take

Scale with reliability

Easily scale 
infrastructure 
alongside your data
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Delta Live Tables
Streaming data ingestion and transformation made simple

59

Unify batch and streaming
Get the simplicity of SQL with the freshness of 
streaming with one unified API

Ensure high data quality          
Deliver reliable data with built-in quality controls, 
testing, monitoring and enforcement 

Automatically manage your infrastructure
Automates complex tedious activities like recovery, 
auto-scaling, and performance optimization

Accelerate ETL development
Declare SQL/Python and DLT automatically 
orchestrates the DAG, handles retries, changing data

CREATE LIVE TABLE clean_data
AS SELECT …
FROM LIVE.raw_data

CREATE STREAMING TABLE raw_data
AS SELECT *
FROM cloud_files(“/raw_data”, 
”json”)
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What is a Live Table?

A live table is: 

• Defined by a SQL query

• Created and kept up-to-date by a 
pipeline

Live tables provides tools to:

• Manage dependencies

• Control quality

• Automate operations

• Simplify collaboration

• Save costs

• Reduce latency

Live Tables are materialized views for the data intelligence platform.

60

CREATE OR REFRESH TABLE report

AS SELECT sum(profit)

FROM prod.sales

LIVE
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What is a Streaming Live Table?

A streaming live table is “stateful”: 

• Ensures exactly-once processing of 
input rows

• Inputs are only read once

• Streaming Live tables compute results 
over append-only streams such as 
Kafka, Kinesis, or Auto Loader (files on 
cloud storage)

• Streaming live tables allow you to reduce 
costs and latency by avoiding 
reprocessing of old data.

Based on SparkTM Structured Streaming

61

CREATE STREAMING LIVE TABLE report

AS SELECT sum(profit)

FROM cloud_files(prod.sales)
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Creating Your First Live Table Pipeline
SQL to DLT in three easy steps…

Write create live table Create a pipeline Click start

• Table definitions are written 
(but not run) in notebooks

• Databricks Repos allow you 
to version control your table 
definitions.

• A Pipeline picks one or more 
notebooks of table 
definitions, as well as any 
configuration required.

• DLT will create or update all 
the tables in the pipelines.
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Development vs Production
Fast iteration or enterprise grade reliability

• Reuses a long-running cluster 
running for fast iteration.

• No retries on errors enabling 
faster debugging.

• Cuts costs by turning off 
clusters as soon as they are done 
(within 5 minutes)

• Escalating retries, including 
cluster restarts, ensure reliability 
in the face of transient issues.

Development Mode Production Mode

63

In the Pipelines 
UI:

BEST PRACTICE
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Auto Loader

64
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Auto Loader Benefits

Highly Scalable

Discover billions 
of files efficiently

Highly 
Performant

Optimized file 
discovery with the 

directory listing 
mode

Cost Effective

Avoid costly LIST 
operations with 

the file notification 
mode

Schema Inference 
& Evolution

Detect schema 
drifts and rescue 

data automatically
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Auto Loader Under the Hood
.option(“cloudFiles.useNotifications”,“true”)

https://www.google.com/url?q=https://lucid.app/documents/edit/ba16c115-4d3c-4356-ae65-0a332884f470/0?callback%3Dclose%26name%3Dslides%26callback_type%3Dback%26v%3D987%26s%3D765.8187507874015&sa=D&source=editors&ust=1704416407066031&usg=AOvVaw2ciyW2n__wJAhPBZYM7tQP
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● Leverage incremental listing for directory listing mode

○ Files must be lexicographically ordered

○ Determination is automatic

■ cloudFiles.useIncrementalListing = “auto” is default

○ DBR 9.1+

○ Use file notification mode If incremental listing is not possible

● Consider processing delays while configuring lifecycle policies on object 
storage services

Auto Loader Best Practices

67
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Knowledge Check



©2023 Databricks Inc. — All rights reserved

Which of the following could be used as sources in a 
stream processing pipeline?

Select two responses

A. change data capture (CDC) feed
B. Kafka
C. Delta Lake
D. IoT devices
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Which of the following statements about propagating deletes with change 
data feed (CDF) are true? 
Select two responses

A. Deletes cannot be processed at the same time as 
appends and updates.

B. Commit messages can be specified as part of the 
write options using the userMetadata option.

C. Deleting data will create new data files rather than 
deleting existing data files.

D. In order to propagate deletes to a table, a MERGE 
statement is required in SQL.
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Which of the following are considerations to keep in mind 
when choosing between micro-batch and continuous 
execution mode? 

Select two responses.

A. Desired latency
B. Total cost of operation (TCO)
C. Maximum throughput
D. Cloud object storage
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Which of the following functions completes the following 
code snippet to return a Spark DataFrame in a structured 
streaming query?

spark.readStream.format("kafka")
  .option("kafka.bootstrap.servers",...)
  .option("subscribe", "topic")
  _____

Select one response.
A. .load()
B. .print()
C. .return()
D. .merge()
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In stream processing, datasets are _____.

Select one response

A. continuous and bounded
B. continuous and unbounded
C. micro-batch and unbounded
D. micro-batch and bounded


