
©2023 Databricks Inc. — All rights reserved

Streaming ETL 
Patterns with 
DLT



©2023 Databricks Inc. — All rights reserved

Agenda
Streaming ETL Patterns with DLT

Lesson Name Lesson Name

Lecture: Data Ingestion Patterns Lecture: Data Modeling

Data Ingestion Patterns

ADE 2.1 - Follow Along Demo - Auto Load to 
Bronze

ADE 2.2 - Follow Along Demo - Stream from 
Multiplex Bronze

ADE 2.5 - Follow Along Demo - Data Modeling - SCD 
Type 2

Lecture: Data Quality Enforcement Patterns Lecture: Streaming Joins and Statefulness

ADE 2.3 - Follow Along Demo - Data Quality 
Enforcement

ADE 2.6 - Follow Along Demo - Streaming Joins

ADE 2.4L - Streaming ETL Lab



©2023 Databricks Inc. — All rights reserved

Data Ingestion 
Patterns



©2023 Databricks Inc. — All rights reserved

Why Do We Need These Patterns?
Limitations at Data Ingestion Stage

• Streaming sources like Kinesis, Kafka and EventHubs only retain data for a 
limited amount of time

• Need for retention - full history of data

• Reprocessing raw data

• Perform GDPR and compliance tasks

• Recover data 

• Need for a simple, maintainable and scalable architecture

• Keeping full history in the streaming source is expensive



©2023 Databricks Inc. — All rights reserved

Pattern 1: Use Delta for Infinite Retention
Delta provides cheap, elastic and governable storage for transient sources

bronze

cloud_files

CREATE STREAMING
LIVE TABLE AS …

Use a short retention period to 
avoid compliance risks and 

reduce costs

Avoid complex transformations 
that could have bugs or drop 

important data

Retain history
Easy to perform GDPR and other 

compliance tasks

CREATE STREAMING
LIVE TABLE AS …

pipelines.reset.allowed=false
ensures that downstream computation can 

be full-refreshed without losing data 

TBLPROPERTIES (
  pipelines.reset.allowed=false
)



©2023 Databricks Inc. — All rights reserved

Pattern 2: Up-to-date Replica with CDC 
Maintain an up-to-date replica of a table stored elsewhere

• Use Change Data Capture (CDC) from RDMS and create replica as Delta 

• A variety of 3rd party tools can provide a streaming change feed

cloud_filesRDS Amazon DMS to S3 APPLY CHANGES INTO

replicated_table 

MySQL 
or

Postgres

Debezium APPLY CHANGES INTO

replicated_table 

Oracle Golden Gate APPLY CHANGES INTO

replicated_table 



©2023 Databricks Inc. — All rights reserved

Pattern 3: Multiplex Ingestion  
Multiplexing is used when a set of independent streams all share the 
same source

Simplex Multiplex



©2023 Databricks Inc. — All rights reserved

Pattern 3: Multiplex Ingestion  
Anti-Pattern: Using Kafka as Bronze Table

Don’t use Kafka as Bronze Table:

• Data retention limited by Kafka; 
expensive to keep full history

• All processing happens on ingest

• If stream gets too far behind, data 
is lost

• Cannot recover data (no history 
to replay)



©2023 Databricks Inc. — All rights reserved

Pattern 3: Multiplex Ingestion Pattern  
Multiplexing is used when a set of independent streams all share the 
same source



©2023 Databricks Inc. — All rights reserved

   

Demo: Auto Load to 
Bronze



©2023 Databricks Inc. — All rights reserved

   

Demo: Stream from 
Multiplex Bronze



©2023 Databricks Inc. — All rights reserved

Data Quality 
Enforcement Patterns



©2023 Databricks Inc. — All rights reserved

Silver Layer for Quality Enforcement 
Silver Layer Objectives

• Validate data quality and schema

• Enrich and transform data

• Optimize data layout and storage for downstream queries

• Provide single source of truth for analytics



©2023 Databricks Inc. — All rights reserved

Schema Enforcement & Evolution

• Enforcement prevents bad records from entering table
• Mismatch in type or field name

• Evolution allows new fields to be added
• Useful when schema changes in production/new fields added to nested data

• Cannot use evolution to remove fields

• All previous records will show newly added field as Null
• For previously written records, the underlying file isn’t modified.

• The additional field is simply defined in the metadata and dynamically read as null



©2023 Databricks Inc. — All rights reserved

Alternative Quality Check Approaches

• Add a “validation” field that captures any validation errors and a null 
value means validation passed.

• Quarantine data by filtering non-compliant data to alternate location

• Warn without failing by writing additional fields with constraint check 
results to Delta tables



©2023 Databricks Inc. — All rights reserved

Pattern: Quarantine Invalid Records
What if we want to save the records that violate data quality constraints 
for analysis?

Limitations:

• Processes the data twice

Limitations:

• Doesn’t use expectations; data quality 
metrics are not available in the event logs 
or the pipelines UI.

Method 1: Create Inverse 
Expectation Rules

Method 2: Add a validation status 
column and use for partitioning

Id Name V

1 A 1

2 B 0

3 C 0

4 D 1

Id Name V

1 A 1

4 D 1

Id Name V

2 B 0

3 C 0

Records meeting 
expectations (V=1)

Records meeting 
inverse expectations 
(V=0)

Id Name V

1 A 1

2 B 0

3 C 0

4 D 1

Id Name V

1 A 1

4 D 1

2 B 0

3 C 0

Partition by V



©2023 Databricks Inc. — All rights reserved

Pattern: Verify Data with Row Comparison 
Validate row counts across tables to verify that data was processed 
successfully without dropping rows.

• Solution:
• Add an additional table to your 

pipeline that defines an 
expectation to perform the 
comparison. 

• The results of this expectation 
appear in the event log and the 
Delta Live Tables UI.

Table A

1 A 1

2 B 0

3 C 0

4 D 1

Table B

1 A 1

2 B 1

3 C 0

4 D 1

Ingestion / Processing

DLT Comparing 
Count (Table A) to Count 

(Table B)



©2023 Databricks Inc. — All rights reserved

Pattern: Define Tables for Adv. Validation
Perform advanced data validation with DLT expectations

• Complex data quality checks examples;
• A derived table contains all records from the 

source table

• Guaranteeing the equality of a numeric column 
across tables

• Solution:
• Define DLT using aggregate and join queries and 

use the results of those queries as part of your 
expectation checking.



©2023 Databricks Inc. — All rights reserved

   

ADE 2.3 - Data 
Quality Enforcement



©2023 Databricks Inc. — All rights reserved

   

ADE 2.4L - 
Streaming ETL Lab



©2023 Databricks Inc. — All rights reserved

Data Modeling



©2023 Databricks Inc. — All rights reserved

Learning Objectives
By the end of this lesson, you should be able to:

Describe main concepts of dimensional modeling1

2

3

Describe SCD tables and implementation with Delta Live Tables

Explain a common pipeline wherein a streaming data source joins to 
a static table.



©2023 Databricks Inc. — All rights reserved

Slowly Changing 
Dimensions in 
Databricks



©2023 Databricks Inc. — All rights reserved

Dimensional Modeling
Fact Tables vs. Dimension Tables

• Fact Tables:  Often contain a granular 
record of activities

• Dimension Tables: Often contain data 
may be updated or modified over time.

Modeling Guidelines:

• Denormalize dimension and fact tables
• Use conformed dimensions
• Use slowly changing dimensions as 

necessary



©2023 Databricks Inc. — All rights reserved

Dimensional Modeling

• Often is a time series
• No intermediate aggregations
• No overwrite/update/delete operations
• Often append-only operations

Fact Tables as Incremental Data



©2023 Databricks Inc. — All rights reserved

Slowly Changing Dimensions (SCD)
3 types of dimension tables

• No changes allowed

• Tables are either static 
or append only

• Examples: static 
lookup tables, 
append-only fact 
tables

• Overwrite but no 
history is maintained

• May contain recording 
of when record was 
entered, but not 
previous values

• Example: valid 
customer mailing 
address

• Add a new row; mark 
old row as obsolete

• Strong history is 
maintained

• Example: tracking 
product price changes 
over time

Type 0 Type 1 Type 2



©2023 Databricks Inc. — All rights reserved

Slowly Changing Dimensions (SCD)
3 types of dimension tables

Type 0 /  Type 1 Type 2

user_id street name

1 123 Oak Ave Sam

2 430 River Rd Abhi

3 1000 Rodeo Dr Casey

user_id street name valid_from current

1 123 Oak Ave Sam 2020-01-01 true

2 99 Jump St Abhi 2020-01-01 false

3 1000 Rodeo 
Dr

Kasey 2020-01-01 false

2 430 River Rd Abhi 2021-10-10 true

3 1000 Rodeo 
Dr

Casey 2021-10-10 true



©2023 Databricks Inc. — All rights reserved

null

SCD Type 2 with DLT

APPLY CHANGES INTO LIVE.cities

FROM STREAM(LIVE.city_updates) 

KEYS (id)

SEQUENCE BY ts

STORED AS SCD TYPE 2 

Keep a record of how values changed over time

city_updates

{"id": 1, "ts": 1, "city": "Bekerly, CA"}
{"id": 1, "ts": 2, "city": "Berkeley, CA"}

id

1

cities

city

Bekerly, CA

__starts_at

1

__ends_at

2

1 Berkeley, CA 2 null

__starts_at and __ends_at will 
take on the type of the SEQUENCE 

BY field (ts).



©2023 Databricks Inc. — All rights reserved

Applying SCD Principles to Facts

order_id user_id occurred_at action processed_time

123 1 2021-10-01 10:05:00 ORDER_CANCELLED 2021-10-01 10:05:30

123 1 2021-10-01 10:00:00 ORDER_PLACED 2021-10-01 10:06:30

• Fact table usually append-only (Type 0)

• Can leverage event and processing times for append-only history



©2023 Databricks Inc. — All rights reserved

   

ADE 2.5 - 
Data Modeling



©2023 Databricks Inc. — All rights reserved

Streaming Joins and 
Statefulness



©2023 Databricks Inc. — All rights reserved

The Components of a Stateful Stream



©2023 Databricks Inc. — All rights reserved

Statefulness vs. Query Progress

• Some operations are specifically stateful in that the results of 
processing earlier records from the stream affect the processing of 
later records.

• Examples include deduplication, aggregation, and stream-stream joins

• Other transformations just need to store incremental query progress 
and are not stateful.

• Examples include simple transformations and stream-static joins

• Progress and state are stored in checkpoints and managed by the 
driver during query processing.



©2023 Databricks Inc. — All rights reserved

Stream-Static Joins

• Delta Lake enables dynamic stream-static joins
• Each micro-batch captures the most recent state of the Delta table 

that is the static side of the join
• This does not occur if the static side of the join is another format such as 

Parquet

• Allows modification of dimension while maintaining downstream 
composability

Note: Because Delta Lake does not enforce foreign key constraints, it is 
possible that joined data will go unmatched.

Using Dimension Tables in Incremental Updates



©2023 Databricks Inc. — All rights reserved

Streaming Queries are Not Stateful
Each input row is processed only once

A change to a streaming live table’s 
definition does not recompute results by 
default:

CREATE STREAMING LIVE TABLE raw_data

AS SELECT a + 1 AS a

FROM cloud_files("/data", "json”)

 

"/data" raw_data

{"a”: 1}

b

2

{"a”: 2} 3

a * 2 AS a

 

{"a”: 3} 6

{"a”: 4} 8



©2023 Databricks Inc. — All rights reserved

Streaming Joins are Not Stateful
Enrich data by joining with an up-to date-snapshot stored in Delta

A change to joined table snapshot does 
not recompute results by default:

CREATE STREAMING LIVE TABLE raw_data

AS SELECT *

FROM cloud_files("/data", "json”) f

JOIN prod.cities c USING id

 

"/data" raw_data

{"a”: 1}

{"a”: 1}

id

1

city

Bekerly, CA

id

1

city

Bekerly, CA

1 Berkeley, CA

Berkeley, CA



©2023 Databricks Inc. — All rights reserved

Clear State in DLT
Perform backfills after critical changes using full refresh

Full-refresh clears the table’s data and the 
queries state, reprocessing all the data.

CREATE STREAMING LIVE TABLE raw_data

AS SELECT a * 2 AS a

FROM cloud_files("/data", "json”)

 

"/data" raw_data

{"a”: 1}

b

2

{"a”: 2} 3

{"a”: 3} 6

{"a”: 4} 8

{"a”: 1}

b

2

{"a”: 2} 4

{"a”: 3} 6

{"a”: 4} 8

After full-refresh



©2023 Databricks Inc. — All rights reserved

Stream-Static Join & Merge

• Join driven by streaming data

• Join triggers shuffle

• Join itself is stateless

• Control state information with 
predicate

• Goal is to broadcast static table to 
streaming data

• Broadcasting puts all data on each 
node

1. Main input stream
salesSDF = (
  spark
    .readStream
    .format("delta")
    .table("sales")
)

2. Join item category lookup
itemSalesSDF = (
  salesSDF
    .join(
      spark.table(“items”)
       .filter(“category=’Food’), # 
Predicate
      on=[“item_id”]
    )
)



©2023 Databricks Inc. — All rights reserved

   

ADE 2.6 - Streaming 
Joins



©2023 Databricks Inc. — All rights reserved

Knowledge Check



©2023 Databricks Inc. — All rights reserved

Which of the following is considered a recommended best 
practice for ingesting streaming data?
Select one response.

A. Use streaming live tables for raw data and streaming tables for 
bronze, silver, and gold quality data.

B. Use streaming tables for bronze quality data and streaming 
live tables for silver and gold quality data.

C. Use streaming live tables for bronze quality data and 
streaming tables for silver and gold quality data.

D. Use streaming tables for raw data and streaming live tables for 
bronze, silver, and gold quality data.



©2023 Databricks Inc. — All rights reserved

A data engineer has data that needs to be updated. However, they need to 
have access to a recorded history of the information previously stored in the 
dataset before the update. Which of the following table types should the data 
engineer use for their data?

Select one response.

A. Type 0
B. Type 1
C. Type 2
D. Type 1 or Type 2



©2023 Databricks Inc. — All rights reserved

Which of the following operations can be performed on stateless tables to limit 
the state dimension?

Select one response.

A. Stream-stream join
B. Stream-static join
C. Stateful aggregation
D. Drop duplicates



©2023 Databricks Inc. — All rights reserved

Which of the following statements about fact tables and dimension tables 
are true?

Select two responses.

A. Transactional guarantees and Delta Lake ensure that the newest version 
of a dimension table will be referenced each time a query is processed 
for incremental workloads. 

B. Joined data cannot go unmatched because of Delta Lake’s foreign key 
constraint.

C. Dimension tables contain a granular record of activities, while fact tables 
contain data that is updated or modified over time. 

D. Modern guidelines suggest denormalizing dimension and fact tables.



©2023 Databricks Inc. — All rights reserved

The following line of code is supposed to create a set of inverted rules for a 
quarantine table.

quarantine_rules = _____

Which of the following correctly fills in the blank?

Select one response.

A. {"invalid_record": f"NOT({' AND '.join(rules.values())})"}
B. {"invalid_record": f"&&({' ! '.join(rules.values())})"}
C. {"invalid_record": f"NOT({' OR '.join(rules.values())})"}
D. {"invalid_record": f"IF({' NULL '.join(rules.values())})"}


