

Streaming ETL Patterns with DLT

Agenda Streaming ETL Patterns with DLT

Lesson Name	Lesson Name
Lecture: Data Ingestion Patterns	Lecture: Data M
Data Ingestion Patterns	
ADE 2.1 – Follow Along Demo – Auto Load to Bronze	ADE 2.5 - Follow Type
ADE 2.2 – Follow Along Demo – Stream from Multiplex Bronze	
Lecture: Data Quality Enforcement Patterns	Lecture: <u>Stream</u>
ADE 2.3 – Follow Along Demo – Data Quality Enforcement	ADE 2.6 – Follow
ADE 2.4L - Streaming ETL Lab	

<u>/Iodeling</u>

w Along Demo - Data Modeling - SCD 2

ning Joins and Statefulness

w Along Demo – Streaming Joins

Data Ingestion Patterns

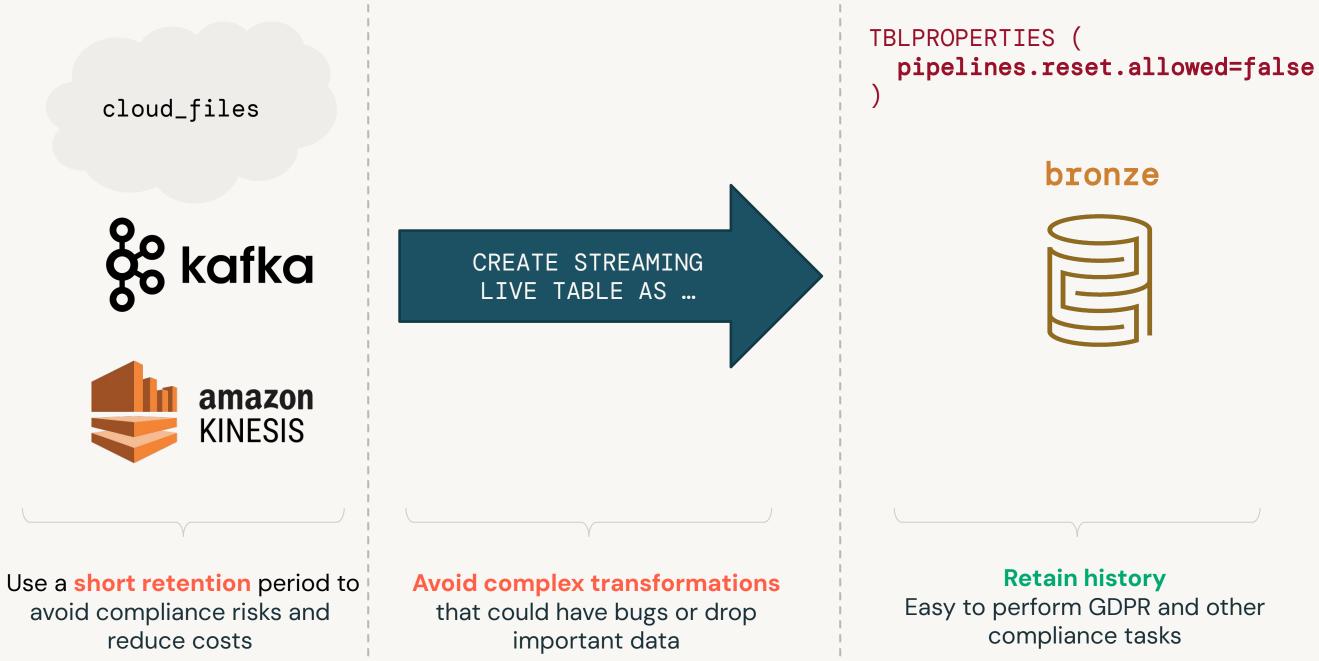
Why Do We Need These Patterns?

Limitations at Data Ingestion Stage

- Streaming sources like Kinesis, Kafka and EventHubs only retain data for a **limited** amount of time
- Need for retention full history of data
 - Reprocessing raw data
 - Perform GDPR and compliance tasks
 - Recover data
- Need for a simple, maintainable and scalable architecture
- Keeping full history in the streaming source is **expensive**

Pattern 1: Use Delta for Infinite Retention

Delta provides cheap, elastic and governable storage for transient sources

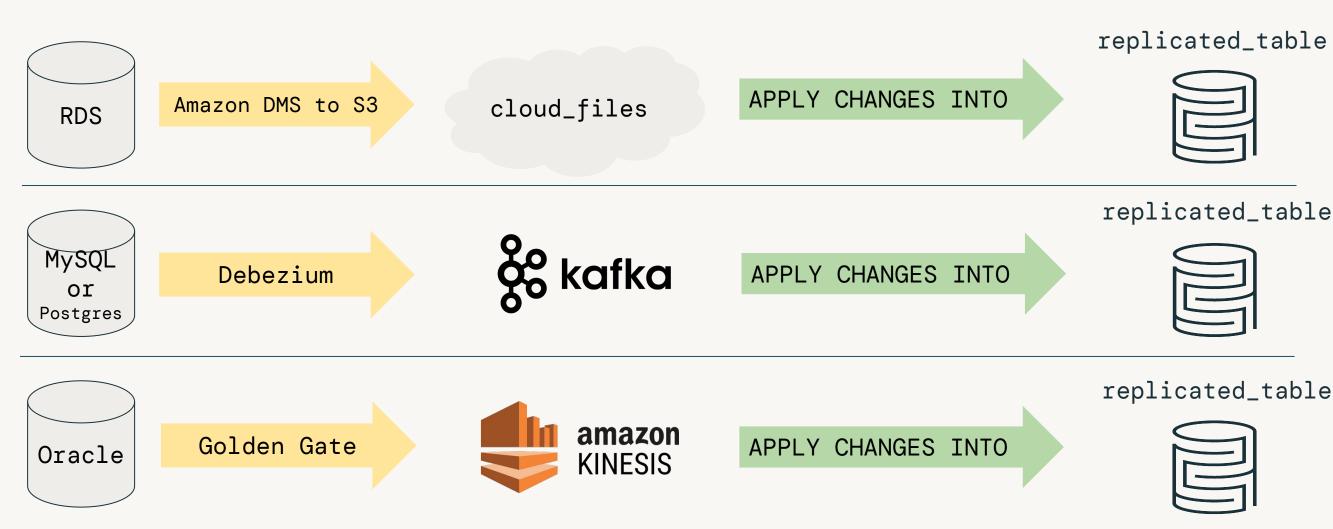


CREATE STREAMING LIVE TABLE AS ...

pipelines.reset.allowed=false ensures that downstream computation can be full-refreshed without losing data

Pattern 2: Up-to-date Replica with CDC Maintain an up-to-date replica of a table stored elsewhere

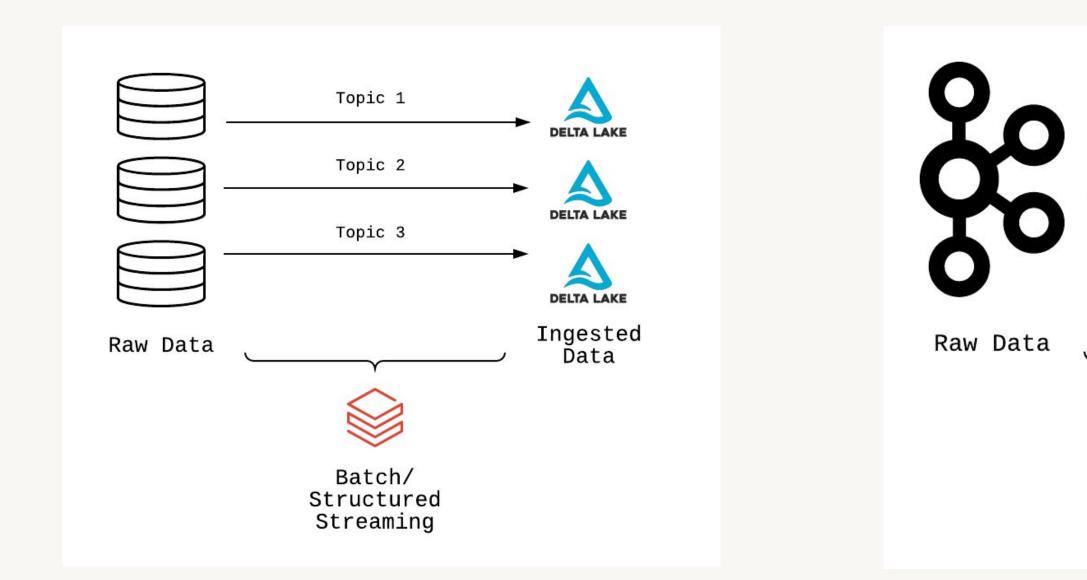
- Use Change Data Capture (CDC) from RDMS and create replica as Delta
- A variety of 3rd party tools can provide a streaming change feed

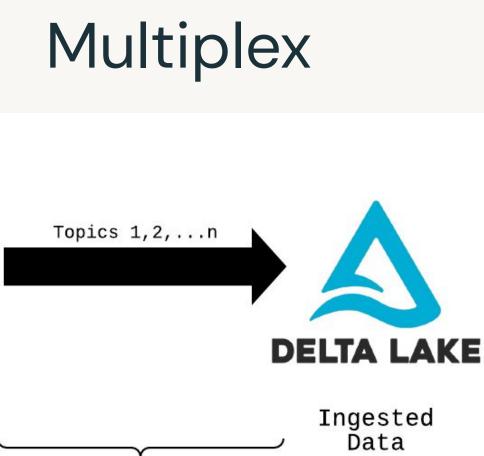


Pattern 3: Multiplex Ingestion Multiplexing is used when a set of independent streams all share the

Multiplexing is used when a set of independent same source

Simplex





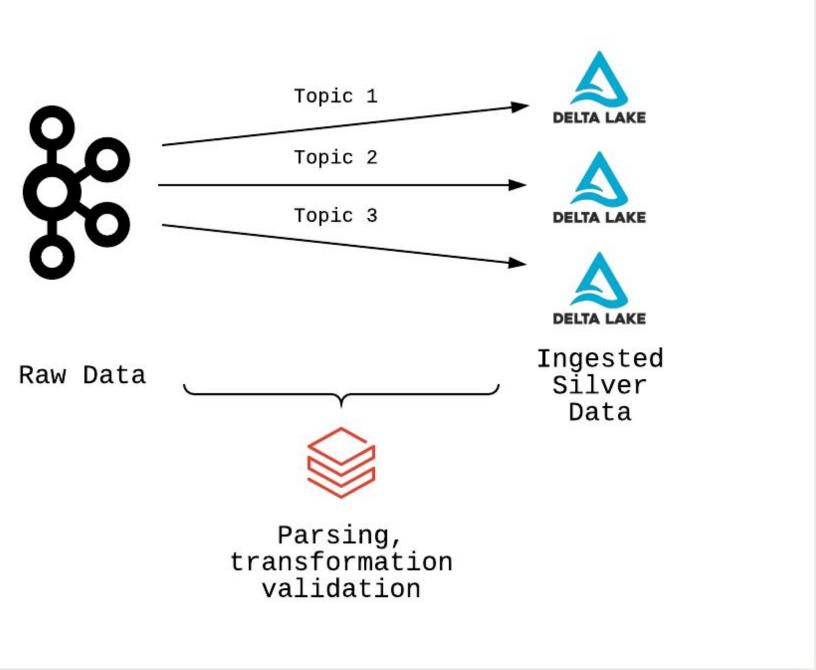
Structured Streaming

Pattern 3: Multiplex Ingestion

Anti-Pattern: Using Kafka as Bronze Table

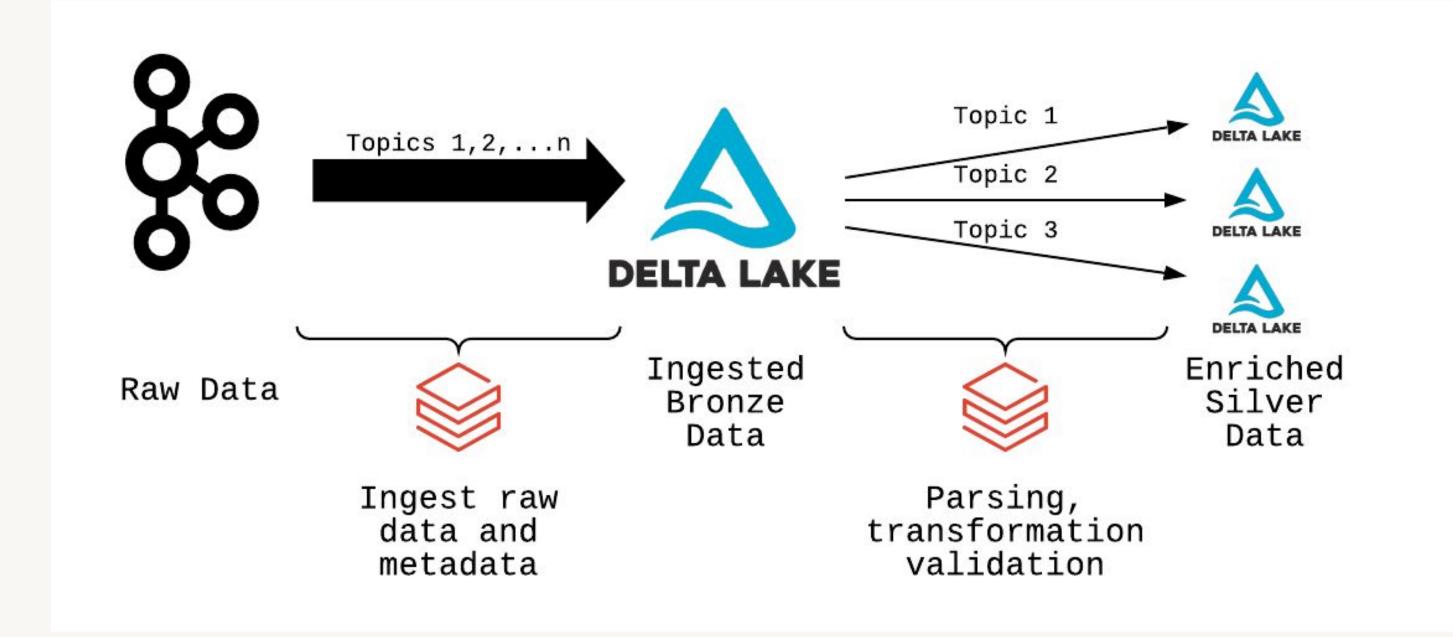
Don't use Kafka as Bronze Table:

- Data retention limited by Kafka; expensive to keep full history
- All processing happens on ingest
- If stream gets too far behind, data is lost
- Cannot recover data (no history) to replay)

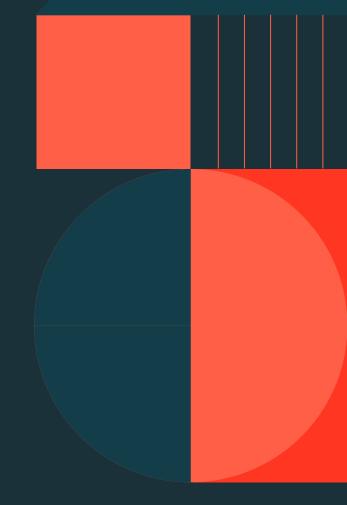


Pattern 3: Multiplex Ingestion Pattern Multiplexing is used when a set of independent streams all share the

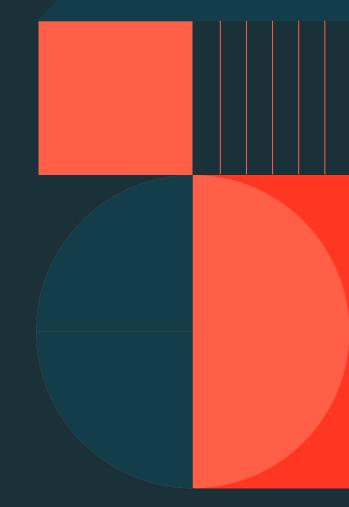
same source



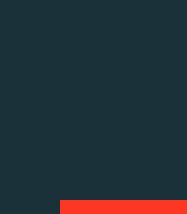
Demo: Auto Load to Bronze



Demo: Stream from Multiplex Bronze



Data Quality Enforcement Patterns



Silver Layer for Quality Enforcement Silver Layer Objectives

- Validate data quality and schema
- Enrich and transform data
- Optimize data layout and storage for downstream queries
- Provide single source of truth for analytics

Schema Enforcement & Evolution

- Enforcement prevents bad records from entering table
 - Mismatch in type or field name
- Evolution allows new fields to be added
 - Useful when schema changes in production/new fields added to nested data
 - Cannot use evolution to remove fields
 - All previous records will show newly added field as Null
 - For previously written records, the underlying file isn't modified.
 - The additional field is simply defined in the metadata and dynamically read as null

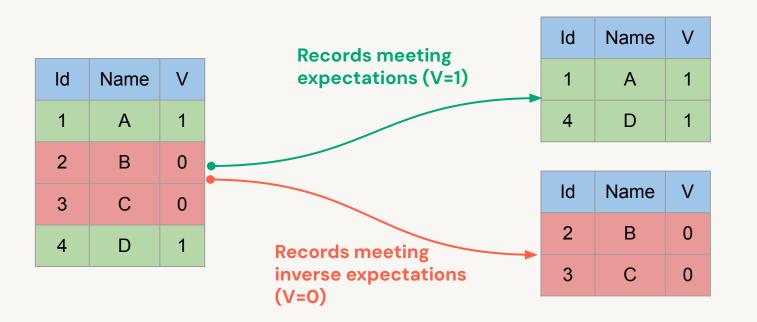
Alternative Quality Check Approaches

- Add a "validation" field that captures any validation errors and a null value means validation passed.
- Quarantine data by filtering non-compliant data to alternate location
- Warn without failing by writing additional fields with constraint check results to Delta tables

Pattern: Quarantine Invalid Records What if we want to save the records that violate data quality constraints

for analysis?

Method 1: Create Inverse **Expectation Rules**

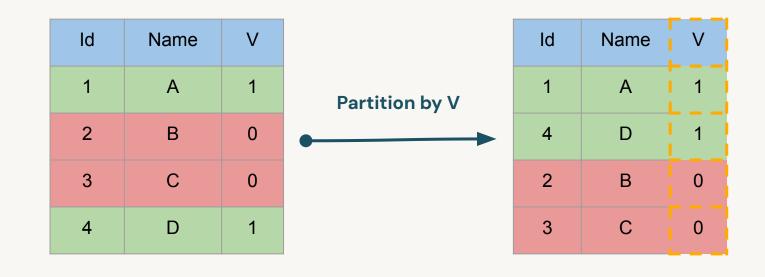


Limitations:

Processes the data twice

©2023 Databricks Inc. – All rights reserved

Method 2: Add a validation status column and use for partitioning



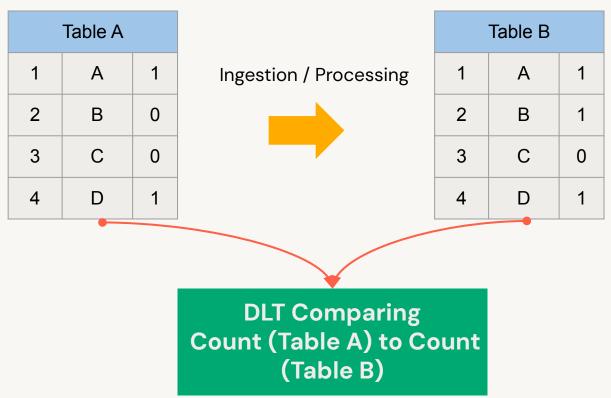
Limitations:

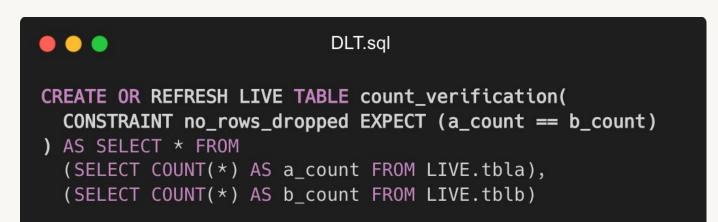
Doesn't use expectations; data quality metrics are not available in the event logs or the pipelines UI.

Pattern: Verify Data with Row Comparison Validate row counts across tables to verify that data was processed

Validate row counts across tables to verify that successfully without dropping rows.

- Solution:
 - Add an additional table to your pipeline that defines an expectation to perform the comparison.
 - The results of this expectation appear in the event log and the Delta Live Tables UI.



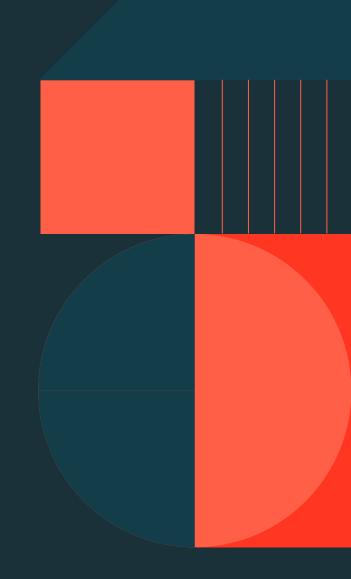


Pattern: Define Tables for Adv. Validation Perform advanced data validation with DLT expectations

- Complex data quality checks examples;
 - A derived table contains all records from the source table
 - Guaranteeing the equality of a numeric column across tables
- Solution:
 - Define DLT using aggregate and join queries and use the results of those queries as part of your expectation checking.

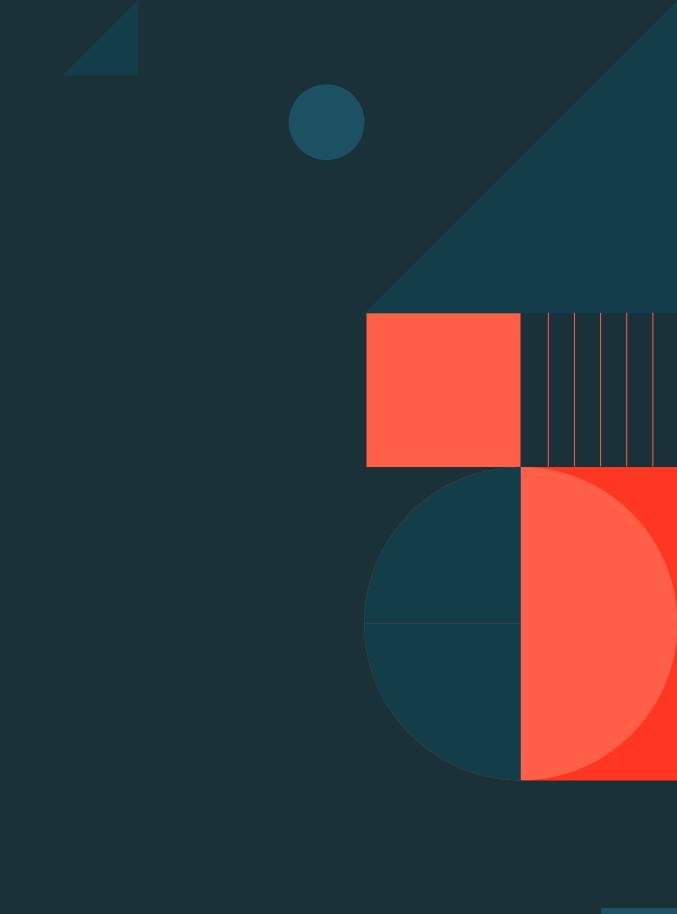
-- Validates all expected records are present in the "report" table CREATE LIVE TABLE compare_tests(CONSTRAINT no_missing_records EXPECT (r.key IS NOT NULL) AS SELECT * FROM LIVE.validation_copy v LEFT OUTER JOIN LIVE.report r ON v.key = r.key

ADE 2.3 – Data Quality Enforcement



ADE 2.4L – Streaming ETL Lab

©2023 Databricks Inc. – All rights reserved



<

Data Modeling

Learning Objectives

By the end of this lesson, you should be able to:

Describe main concepts of dimensional modeling

Describe SCD tables and implementation with Delta Live Tables

Explain a common pipeline wherein a streaming data source joins to a static table.

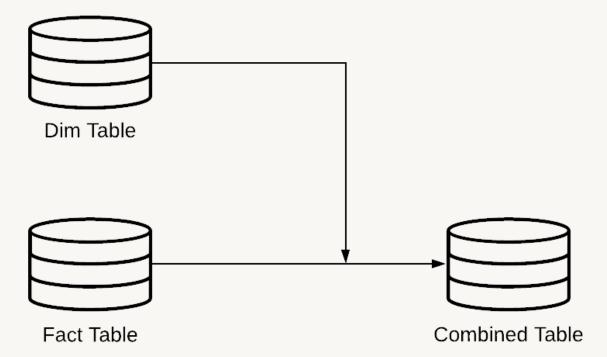
Slowly Changing Dimensions in Databricks

Dimensional Modeling Fact Tables vs. Dimension Tables

- Fact Tables: Often contain a granular record of activities
- **Dimension Tables:** Often contain data may be updated or modified over time.

Modeling Guidelines:

- Denormalize dimension and fact tables
- Use conformed dimensions
- Use slowly changing dimensions as necessary



Dimensional Modeling

Fact Tables as Incremental Data

- Often is a time series
- No intermediate aggregations
- No overwrite/update/delete operations
- Often append-only operations

Slowly Changing Dimensions (SCD)

3 types of dimension tables

Type O

- No changes allowed
- Tables are either static or append only
- Examples: static lookup tables, append-only fact tables

Type 1

- Overwrite but no history is maintained
- May contain recording of when record was entered, but not previous values
- Example: valid customer mailing address

Type 2

- Add a new row; mark old row as obsolete
- Strong history is maintained
- Example: tracking product price changes over time

Slowly Changing Dimensions (SCD)

3 types of dimension tables

Type 0 / Type 1

user_id	street	name
1	123 Oak Ave	Sam
2	430 River Rd	Abhi
3	1000 Rodeo Dr	Casey

Type 2

user_id	street	name	valid_from	current
1	123 Oak Ave	Sam	2020-01-01	true
2	99 Jump St	Abhi	2020-01-01	false
3	1000 Rodeo Dr	Kasey	2020-01-01	false
2	430 River Rd	Abhi	2021-10-10	true
3	1000 Rodeo Dr	Casey	2021-10-10	true

SCD Type 2 with DLT Keep a record of how values changed over time

APPLY CHANGES INTO LIVE.cities FROM STREAM(LIVE.city_updates) KEYS (id) SEQUENCE BY ts STORED AS SCD TYPE 2

> __starts_at and __ends_at will take on the type of the SEQUENCE BY field (ts).

cities

id	city	starts_at	ends_at
1	Bekerly, CA	1	2
1	Berkeley, CA	2	null

city_updates

{"id": 1, "ts": 1, "city": "Bekerly, CA"}

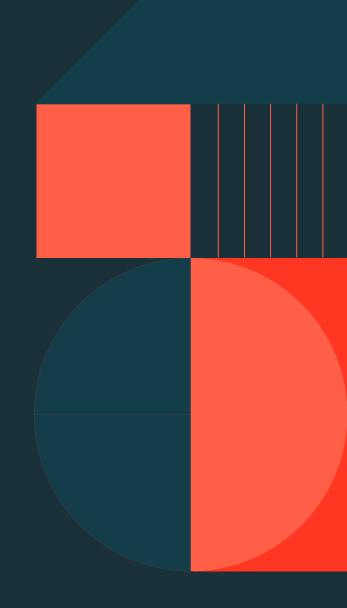
{"id": 1, "ts": 2, "city": "Berkeley, CA"}

Applying SCD Principles to Facts

- Fact table usually append-only (Type 0) •
- Can leverage event and processing times for append-only history

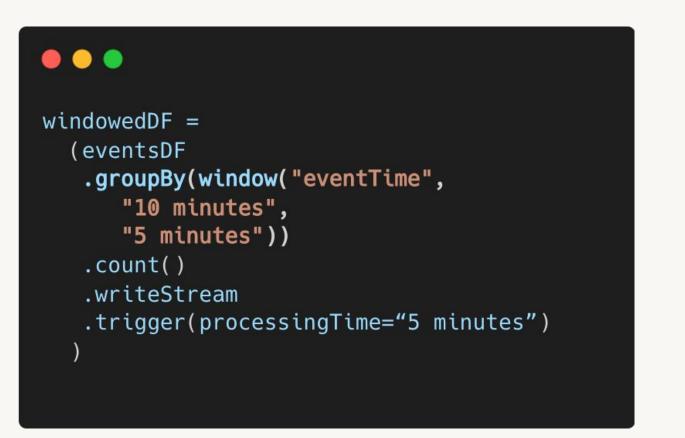
order_id	user_id	occurred_at	action	processed_time
123	1	2021-10-01 10:05:00	ORDER_CANCELLED	2021-10-01 10:05:30
123	1	2021-10-01 10:00:00	ORDER_PLACED	2021-10-01 10:06:30

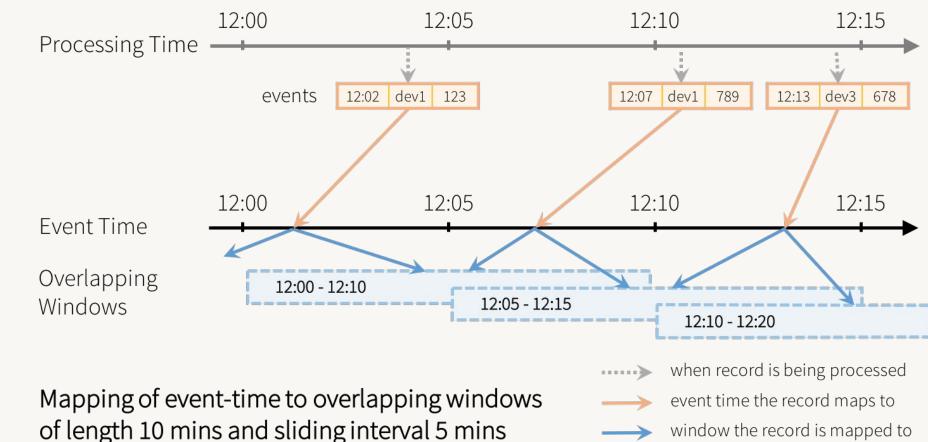
ADE 2.5 – Data Modeling



Streaming Joins and Statefulness

The Components of a Stateful Stream





Statefulness vs. Query Progress

- Some operations are specifically stateful in that the results of processing earlier records from the stream affect the processing of later records.
 - Examples include deduplication, aggregation, and stream-stream joins
- Other transformations just need to store incremental query progress and are **not stateful**.
 - Examples include simple transformations and stream-static joins
- Progress and state are stored in checkpoints and managed by the driver during query processing.

Stream-Static Joins

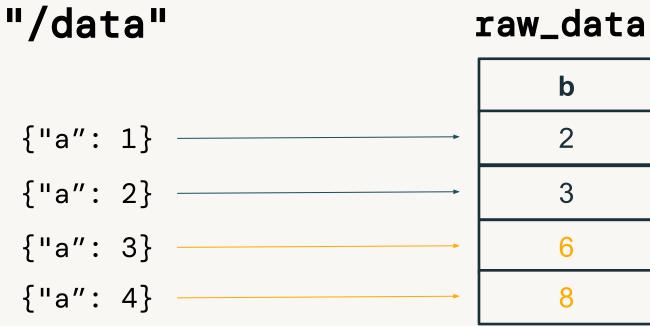
Using **Dimension Tables** in Incremental Updates

- Delta Lake enables dynamic stream-static joins
- Each micro-batch captures the most recent state of the Delta table that is the static side of the join
 - This does not occur if the static side of the join is another format such as Parquet
- Allows modification of dimension while maintaining downstream composability

Note: Because Delta Lake does not enforce foreign key constraints, it is possible that joined data will go unmatched.

Streaming Queries are Not Stateful Each input row is processed only once

A change to a streaming live table's definition does not recompute results by default: CREATE STREAMING LIVE TABLE raw_data AS SELECT a + 1 AS a a * 2 AS a {"a": FROM cloud_files("/data", "json")



Streaming Joins are Not Stateful Enrich data by joining with an up-to date-snapshot stored in Delta

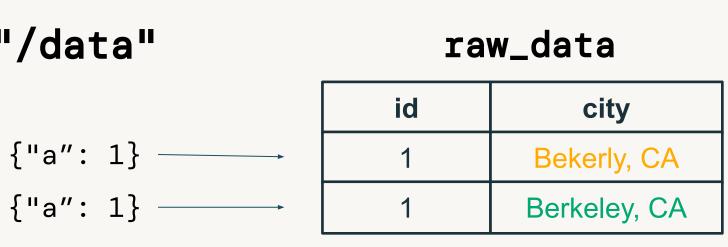
A change to joined table snapshot does not recompute results by default:

CREATE STREAMING LIVE TABLE raw_data AS SELECT * FROM cloud_files("/data", "json") f JOIN prod.cities c USING id

"/data"

{"a": 1} -

id



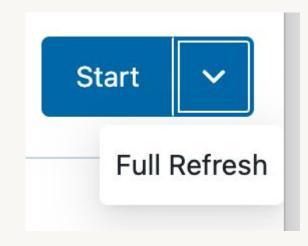
Berkeley, CA

Clear State in DLT

Perform backfills after critical changes using full refresh

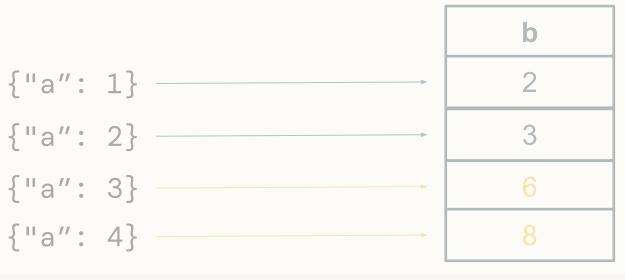
Full-refresh clears the table's data and the queries state, **reprocessing all the data**.

CREATE STREAMING LIVE TABLE raw_data AS SELECT a * 2 AS a FROM cloud_files("/data", "json")



"/data"

raw_data



After full-refresh

{"a":	1}	
{"a":	2}	
{"a":	3}	
{"a":	4}	

b
2
4
6
8

Stream-Static Join & Merge

- Join driven by streaming data
- Join triggers shuffle
- Join itself is stateless
- Control state information with predicate
- Goal is to broadcast static table to streaming data
- Broadcasting puts all data on each node

Main input stream

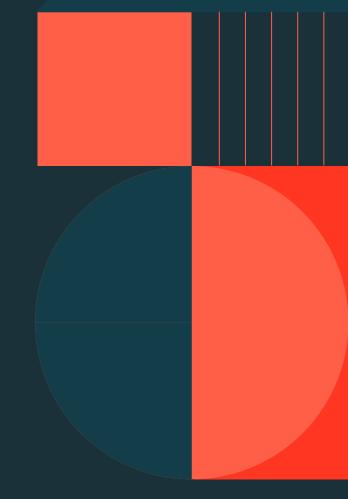
1.

2.

```
salesSDF = (
    spark
    .readStream
    .format("delta")
    .table("sales")
)
Join item category lookup
```

```
itemSalesSDF = (
   salesSDF
   .join(
      spark.table("items")
      .filter("category='Food'), #
Predicate
      on=["item_id"]
   )
)
```


ADE 2.6 – Streaming Joins



Knowledge Check

Which of the following is considered a recommended best practice for ingesting streaming data? Select one response.

- A. Use streaming live tables for raw data and streaming tables for bronze, silver, and gold quality data.
- B. Use streaming tables for bronze quality data and streaming live tables for silver and gold quality data.
- C. Use streaming live tables for bronze quality data and streaming tables for silver and gold quality data.
- D. Use streaming tables for raw data and streaming live tables for bronze, silver, and gold quality data.

A data engineer has data that needs to be updated. However, they need to have access to a recorded history of the information previously stored in the dataset before the update. Which of the following table types should the data engineer use for their data?

Select one response.

- A. Type 0
- B. Type 1
- C. Type 2
- D. Type 1 or Type 2

Which of the following operations can be performed on stateless tables to limit the state dimension?

Select one response.

- A. Stream-stream join
- B. Stream-static join
- C. Stateful aggregation
- D. Drop duplicates

Which of the following statements about fact tables and dimension tables are true?

Select two responses.

- A. Transactional guarantees and Delta Lake ensure that the newest version of a dimension table will be referenced each time a query is processed for incremental workloads.
- B. Joined data cannot go unmatched because of Delta Lake's foreign key constraint.
- C. Dimension tables contain a granular record of activities, while fact tables contain data that is updated or modified over time.
- D. Modern guidelines suggest denormalizing dimension and fact tables.

The following line of code is supposed to create a set of inverted rules for a quarantine table.

quarantine_rules = ____

Which of the following correctly fills in the blank?

Select one response.

- A. {"invalid record": f"NOT({' AND '.join(rules.values())})"} B. {"invalid record": f"&&({' ! '.join(rules.values())})"} C. {"invalid record": f"NOT({' OR '.join(rules.values())})"}
- D. {"invalid record": f"IF({' NULL '.join(rules.values())})"}

