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Introduction

We commence with Designing the Foundation, focusing on establishing fundamental principles in 
Spark programming. Following this, we delve into Code Optimization, uncovering strategies to 
elevate code efficiency and performance. Our exploration further extends to understanding the 
intricate layers of Spark Architecture and optimizing clusters for diverse workloads in Fine-Tuning - 
Choosing the Right Cluster.

Beyond theory, our sessions offer immersive hands-on experiences. Engage in real-time simulation 
through Follow Along - Spark Simulator, and dive deep into critical operational aspects such as 
Shuffles, Spill, Skew, alongside understanding the prowess of Serialization in Spark.

This course aims to equip you with comprehensive expertise in advanced data engineering, 
leveraging the powerful tools and techniques offered by Databricks.
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Building Performant Analytics

File Layout

Code 
Optimization

Cluster Sizing
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Designing the 
Foundation

5
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Fundamental Concepts

6

Why some schemas and queries perform faster than others

● Number of bytes read
● Query complexity/computation
● Number of files accessed
● Parallelism
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Common Performance Bottlenecks

7

Bottleneck Details

Small File Problem ● Listing and metadata operation for too many small files can be expensive
● Can also result in throttling from cloud storage I/O limits

Data Skew ● Large amounts of data skew can result in more work handled by a single executor
● Even if data read in is not skewed, certain transformations can lead to in-memory skew

Processing More 
Than Needed ● Traditional data lake platforms often require rewriting entire datasets or partitions

Resource 
Contention

● Processing large ingestion, ETL jobs at the same time as ad-hoc and BI queries results in 
slow query performance without cluster isolation

Encountered with any big data or MPP system

Before Aggregation After Aggregation by City
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Avoiding the Small File Problem

8

Automatically handle this common performance challenge in Data Lakes

▪ Too many small files greatly increases overhead 
for reads

▪ Too few large files reduces parallelism on reads

▪ Over-partitioning is a common problem

▪ Databricks will automatically tune the size of 
Delta Lake tables

▪ Databricks can automatically compact small 
files on write with auto-optimize

https://www.google.com/url?q=https://docs.databricks.com/delta/tune-file-size.html&sa=D&source=editors&ust=1704416427342016&usg=AOvVaw0-Rb7H7GmWnorlahPu-iAA
https://www.google.com/url?q=https://docs.databricks.com/delta/tune-file-size.html&sa=D&source=editors&ust=1704416427342272&usg=AOvVaw0wf3-OgHU_IK0JU6pjap9f
https://www.google.com/url?q=https://docs.databricks.com/delta/optimizations/auto-optimize.html&sa=D&source=editors&ust=1704416427342401&usg=AOvVaw2lNxyYyH6se7yYUaVHOHcc
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▪ Over-partitioning is a common problem

▪ Databricks will automatically tune the size of 
Delta Lake tables

▪ Databricks will automatically compact small 
files on write with auto-optimize
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https://www.google.com/url?q=https://docs.databricks.com/delta/tune-file-size.html&sa=D&source=editors&ust=1704416427362833&usg=AOvVaw3MYgNSZS_Ty2Zl-DatLmkS
https://www.google.com/url?q=https://docs.databricks.com/delta/optimizations/auto-optimize.html&sa=D&source=editors&ust=1704416427362954&usg=AOvVaw2EtxBtcegGDyoEujffR3ly
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Data Skipping

10

Reducing the amount of data read in reduces processing time

▪ Track file level stats such as min & max to avoid scanning irrelevant files 

▪ File-skipping stats are automatically collected on Delta Lake tables

▪ Note: file stats are only collected automatically on the first 32 columns. Make sure the columns 
frequently used in joins are in the first 32 cols or modify the number of stats collected

▪ Delta Lake and Z-Order brings this technique known as indexing from RDBMS systems to 
the data lake.

▪ Unlike traditional sort-based indexing techniques, Z-Ordering uses multi-dimensional 
clustering for more effective data skipping.

SELECT * FROM table WHERE col < 5

SELECT file_name FROM index 
WHERE col_min < 5

file_name col_min col_max

file1.csv 6 8

file2.csv 3 10

file3.csv 1 4

https://www.google.com/url?q=https://docs.databricks.com/delta/data-skipping.html%23data-skipping-with-z-order-indexes-for-delta-lake&sa=D&source=editors&ust=1704416427409270&usg=AOvVaw31ayBkxqYT-ZbS--HmgymF
https://www.google.com/url?q=https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html?_ga%3D2.21512306.872631315.1646009164-1468227001.1645719051&sa=D&source=editors&ust=1704416427409577&usg=AOvVaw2lBoCs_pq6k5H3R0nxM8Ka
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 Understanding Data Skipping Index in Delta Lake

11

Reducing the amount of data read in reduces processing time

▪ Track file level stats such as min & max to avoid scanning irrelevant files 

▪ File-skipping stats are automatically collected on Delta Lake tables

▪ Note: file stats are only collected automatically on the first 32 columns. Make sure the columns 
frequently used in joins are in the first 32 cols or modify the number of stats collected

▪ Delta Lake and Z-Order brings this technique known as indexing from RDMS systems to 
the data lake.

▪ Unlike traditional sort-based indexing techniques, Z-Ordering uses multi-dimensional 
clustering for more effective data skipping.

SELECT * FROM table WHERE col < 5

SELECT file_name FROM index 
WHERE col_min < 5

file_name col_min col_max

file1.csv 6 8

file2.csv 3 10

file3.csv 1 4

https://www.google.com/url?q=https://docs.databricks.com/delta/data-skipping.html%23data-skipping-with-z-order-indexes-for-delta-lake&sa=D&source=editors&ust=1704416427464700&usg=AOvVaw14BrtCzOTyxUWdC3qEJETY
https://www.google.com/url?q=https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html?_ga%3D2.21512306.872631315.1646009164-1468227001.1645719051&sa=D&source=editors&ust=1704416427465159&usg=AOvVaw2cLbSwVyFYgCo_ubNHXXZH
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Ingestion Time Clustering
Out of the box data skipping with no partitioning or z-order required

000.csv

T + 5T + 3T + 1T + 0

001.csv 997.csv 998.csv 999.csv

Setup: Store Sales table with data naturally ordered by date

Higher is better

12

AWS GCP

Status GA GA

Preserves natural clustering across 
all Delta operations (DML, ingestion, 
maintenance)

19x better query performance 
out of the box
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Table Statistics
Keeping table statistics to date for best results with Cost Based Optimizer

• Collects statistics on all columns in table
• Helps Adaptive Query Execution 

• Choose proper join type 
• Select correct build side in a hash-join
• Calibrating the join order in a multi-way join

ANALYZE TABLE mytable COMPUTE STATISTICS FOR ALL COLUMNS

14
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Table Statistics
Keeping table statistics to date for best results with Cost Based Optimizer

1. ANALYZE TABLE for Metastore Statistics:
● When a table is defined, use ANALYZE TABLE to put statistics in the metastore.
● Usage:

● Statistics are utilized by the Cost-Based Optimizer (CBO) and Adaptive Query Execution (AQE).
● Maintenance:

● Manual process.
● Update statistics when significant data changes occur (e.g., 10% data change).

2. Delta Table Statistics for Job Input:
● Delta tables have per-file statistics determining which files are part of the job input.
● Usage:

● Used to optimize job input, particularly for Delta Lake functionality.
● Maintenance:

● Automatically managed by Delta, no manual intervention required.
3. Adaptive Query Execution (AQE) Stages:

● AQE gathers stats on earlier stages to potentially modify later stages.
● Usage:

● Enhances execution plans dynamically during runtime.
● Maintenance:

● Partly automatic, but understanding when AQE may modify stages is essential for optimization.

15
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Foundational Recommendations
• Leverage Databricks and Delta Lake to take advantage of auto-tuning:

• Auto-tuning file size and auto-optimize to avoid small file problem 
• Automatic skew handling with AQE
• Natural sort order preservation removes need for partitioning tables < 1 TB

• Leverage data skipping with Z-Order and create Z-Order indexes on high 
cardinality columns frequently used in filters (weekly maintenance job)

• Collect table stats, especially on columns used for joins (weekly 
maintenance job)

• Use partitioning for data skipping on low cardinality columns frequently 
used in filters (i.e. year, month, day) - only for tables > 1 TB

• Leverage SQL DML capabilities with Delta Lake to move to a CDC 
architecture and only process change data.

• Leverage isolated job clusters and SQL warehouses to avoid resource 
contention

16

https://www.google.com/url?q=https://docs.databricks.com/delta/optimizations/auto-optimize.html&sa=D&source=editors&ust=1704416428215244&usg=AOvVaw1XI3SzNar-zIzBQlz4mZKg
https://www.google.com/url?q=https://databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html&sa=D&source=editors&ust=1704416428215593&usg=AOvVaw0C1DRko_F_cI0_M8OhFQ1a
https://www.google.com/url?q=https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html?_ga%3D2.21512306.872631315.1646009164-1468227001.1645719051&sa=D&source=editors&ust=1704416428215943&usg=AOvVaw3X4HH02xHMOa_u_uNnVs5W
https://www.google.com/url?q=https://databricks.com/blog/2020/09/29/diving-into-delta-lake-dml-internals-update-delete-merge.html&sa=D&source=editors&ust=1704416428216210&usg=AOvVaw304YnXGOCYf6jIpVteICdp
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Foundational Recommendations
• Auto-Tuning File Size and Auto-Optimize

• Auto-Compact (Per Job): Automatically adjusts file size for each job.
• Optimize (Global): Global optimization to avoid small file issues.

• Automatic Skew Handling with AQE
• Natural Sort Order Preservation

• Removes the need for partitioning tables < 1 TB.

• Leverage Data Skipping
• Use Z-Order and create indexes on high cardinality columns for efficient filtering (weekly maintenance job).

• Collect Table Stats
• Especially on columns used for joins (weekly maintenance job).

• Use Partitioning
• For data skipping on low cardinality columns for tables > 1 TB (e.g., year, month, day).

• Leverage SQL DML Capabilities
• Utilize Delta Lake for Change Data Capture (CDC) architecture and process only change data.

• Leverage Isolated Job Clusters and SQL Warehouses
• Avoid resource contention.

17
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Delta Optimizer

• Field managed tool available today to automate foundational optimizations 
(Z-Order and ANALYZE TABLE)

• Pulls and analyzes the query history + Delta transaction logs and builds a 
data profile to determine the most important columns that each tables 
should be Z-ordered by. 

• Aims to drastically reduce the amount of manual discovery and tuning 
users must do to properly optimize their delta tables, especially when the 
primary query interface is through a DBSQL Warehouse (as an analyst 
using SQL or a BI tool that auto-generates SQL)
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Assess and Debug 
Spark Applications

19
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Executing a Spark Application

Job

Job

Job

Stage

Task

TaskStage

Task

Spark 
application

Data processing tasks run in parallel across a cluster of machines
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ExecutorExecutor Executor

Core Core CoreTask

Spark Architecture

TaskTask

Worker nodes

Driver
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Driver

Executor

Data

Cluster

Scenario: Filter out brown pieces from these candy bags

Core

Partition
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B C D F

G I K LG I K L

A E

H J

Remove brown pieces from the bag, 
place the rest in the corner

Student A, get bag #1, 
Student B, get bag #2, 
Student C, get bag #3…
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B D F

G I K L

A E

H J

C

Students A, E, H, J, 
count bags 13, 14, 15, 16
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A B C D E F

G H I J K L

All done!
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Scenario 2: Count total pieces in candy bags
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We need to count the total 
pieces in these candy bags

A B C D E F

G H I J K L

Stage 1: Local Count
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A D F

G H J K

B

I L

Stage 1: Local Count

C E

Students B, E, I, L, count these 
four bags
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5 6

4 5

A D F

G H J K

Stage 1: Local Count

B

I L

EC

Students B, E, I, L, 
commit your findings
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5

5
6

4

A D F

H J K

B

I L

EC

G

Stage 2: Global Count
Student G, total counts from 

students B, E, I, L
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Stage 2: Global CountStage 1: Local Count

A D F

H J K

B

I L

EC

20

G

5 6

4 5

A D F

G H J K

B

I L

EC
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PHYSICAL PLANNING

RDDs

Runtime Statistics

ADAPTIVE QUERY EXECUTION

Enabled by default as of Spark 3.2

Query Optimization
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Code Optimization Recommendations

33

1. In production jobs, avoid operations that trigger an action besides 
reading and writing files. These include count(), display(), collect().

2. Avoid operations that will force all computation into the driver node 
such as using single threaded python/pandas. Use Pandas API on Spark 
instead to distribute pandas functions.

3. Avoid python UDFs which execute row-by-row. Instead use native 
pyspark functions or Pandas UDFs for vectorized UDFs.

4. Use Dataframes or Datasets instead of RDDs. RDDs cannot take 
advantage of the cost-based optimizer.

https://www.google.com/url?q=https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html&sa=D&source=editors&ust=1704416429021760&usg=AOvVaw2GvXi27OeeVhoAkE_7QPLu
https://www.google.com/url?q=https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html&sa=D&source=editors&ust=1704416429022257&usg=AOvVaw3ADEjxlXp6svFGeGeqTj7C
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Spark UI Simulator

34
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• Notebook All code
• Spark UI  Jobs / Stages / Storage / Environment / Executors / SQL tabs
• Cluster Driver, Worker, Software version
• Lab Online quiz
• Source Notebook Export notebook to import into a workspace
• /mnt/training How to edit paths to point to dataset files
• Home Return to all experiments
• About General information

https://www.databricks.training/spark-ui-simulator
The Spark UI Simulator

https://www.google.com/url?q=https://www.databricks.training/spark-ui-simulator&sa=D&source=editors&ust=1704416429450690&usg=AOvVaw0GUbMciZURT3iwp3Zg9X7n
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Shuffles
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Shuffles

Shuffling is a side effect of wide transformations

• join()

• distinct()

• groupBy()

• orderBy()

And technically some actions, e.g. count()
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Shuffles At A Glance
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Shuffles At A Glance
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Shuffles At A Glance
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Shuffles At A Glance
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Shuffles - Mitigation

• Reduce network IO by using 
fewer, larger workers

• Speed up shuffle reads & writes 
by using NVMe & SSDs

• Reduce amount of shuffled data
• Remove unnecessary 

columns
• Filter out unnecessary 

records preemptively
• Denormalize datasets, esp when 

shuffle is rooted in a join

Reevaluate join strategy:

• Reordering the join
• Bucketing
• Broadcast Hash Join
• Shuffle Hash Joins (default 

for Databricks Photon)
• Sort-Merge Join (default for 

OS Spark)
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Shuffles - Mitigation

• Reduce network IO by using 
fewer, larger workers

• Speed up shuffle reads & writes 
by using NVMe & SSDs

• Reduce amount of shuffled data
• Remove unnecessary 

columns
• Filter out unnecessary 

records preemptively
• Denormalize datasets, esp when 

shuffle is rooted in a join

Reevaluate join strategy:

• Reordering the join
• Dynamically Switching Join 

Strategies
• Broadcast Hash Join
• Shuffle Hash Joins (default 

for Databricks Photon)
• Sort-Merge Join (default for 

OS Spark)
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Spark Join Strategies
Spark Join Strategies are named after their associated distribution and join 
strategies

Distribution Strategy Join Type Join Strategy Name

Broadcast Hash Join Broadcast-Hash Join

Shuffle Hash Join Shuffle-Hash Join

Shuffle Sort Merge Join Shuffle-Sort Merge Join

Broadcast Nested Loop Broadcast-Nested Loop 
Join
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Broadcast

Optimizing Joins: Reordering

1 billion

Broadcast

Broadcast

Full Shuffle

1 million 1K

1 billion

# of table records

1 trillion 1 trillion

1 trillion

1 million 1K

1K

Reduce records per shuffle (mostly automatic w/ AQE, CBO)
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AQE - Tuning Shuffle Partitions

Net effect is fewer partitions for subsequent stages

Before
Partition 0 (70 MB)

Partition 2 (30 MB)

Partition 3 (20 MB)

Partition 4 (10 MB)

Partition 1 (50 MB)

After

Partition 0 (70 MB)

Coalesced Partition (80 MB)
Coalesced Partition (30 MB)

Partition 2 (30 MB)

Partition 3 (20 MB)

Partition 4 (10 MB)

Over simplifying, but we now only need to manage 
spark.sql.shuffle.partitions for the expected maximum
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Step Total
Duration

Number of 
Partitions

Stage Details
Conclusions

Query Plan
Optimization

Step B ~1.5 minutes 825 / 200 Bad distribution / Overhead
@200 partitions are 4x Larger

Potential Spill

-none-

Step C ~1 minute 825 / 832 Horrible distribution / Overhead -none-

Step D ~¾ of a minute 825 / 17 Good Distribution / Minor Overhead CustomShuffleReader

AQE - Tuning Shuffle Partitions
See Experiment #2653

https://www.google.com/url?q=https://www.databricks.training/spark-ui-simulator/experiment-2653/v004-S/index.html&sa=D&source=editors&ust=1704416430532695&usg=AOvVaw3UvWyoptgdaqRrTxS55h5P


©2023 Databricks Inc. — All rights reserved

Spill

55
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● Spill is the term used to refer to the act of moving
data from RAM to disk, and later back into RAM again

● This occurs when a given partition is simply too large to fit into RAM

● In this case, Spark is forced into [potentially] expensive 
disk reads and writes to free up local RAM

● All of this just to avoid the 
dreaded OOM Error

Spill
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● Set spark.sql.files.maxPartitionBytes too high (default is 128 MB)

● The explode() of even a small array

● The join() or crossJoin() of two tables which generates lots of new 
rows

● The join() or crossJoin() of two tables by a skewed key

● The groupBy() where the column has low cardinality

● The countDistinct() and size(collect_set())

● Setting spark.sql.shuffle.partitions too low or wrong use of 
repartition()

Spill - Examples
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In the Spark UI, spill is represented by two values:

● Spill (Memory): For the partition that was spilled,
this is the size of that data as it existed in memory

● Spill (Disk): Likewise, for the partition that was spilled,
this is the size of the data as it existed on disk

The two values are always presented together

The size on disk will always be smaller due to the natural compression
gained in the act of serializing that data before writing it to disk

Spill - Memory & Disk
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Spill Listener - Examples, Review

Step Min 25th Median 75th Max Total

B - shuffle ~2 GB / ~550 MB ~2 GB / ~560 MB ~2 GB / ~565 MB ~2 GB / ~570 MB ~2 GB / ~580 MB ~33 GB

C - union ~2 GB / ~110 MB ~2 GB / ~120 MB ~2 GB / ~125 MB ~2 GB / ~130 MB ~2 GB / ~150 MB ~60 GB

D - explode 0 / ~1.5 GB 0 / ~1.5 GB 0 / ~1.5 GB 0 / ~1.5 GB 0 / ~1.5 GB ~750 GB

E - join* 0 / 0 0 / 0 0 / 0 0 / 0 6 GB / 3 GB ~50 GB

See Experiment #6518

• In Step B, the config value spark.sql.shuffle.partitions is not managed
• Steps C & D simply grow too large as a result of their transformations
• In Step E  the spill is a manifestation of the underlying skew

https://www.google.com/url?q=https://www.databricks.training/spark-ui-simulator/experiment-6518/v002-S/index.html&sa=D&source=editors&ust=1704416431524690&usg=AOvVaw2_WlOXazzFWOKt6x5At7MY
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Skew
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   Before aggregation                                          After aggregation by city

Skew - Before and After



©2023 Databricks Inc. — All rights reserved

Handling Data Skew

62

Data skew is unavoidable, Databricks handles this automatically

▪ In MPP systems, data skew significantly 
impacts performance because some 
workers are processing much more data

▪ Most cloud DWs require a manual, offline 
redistribution to solve for data skew

▪ With Adaptive Query Execution Spark 
automatically breaks down larger partitions 
into smaller, similar sized partitions

Partition 6 (150 MB)

Partition 1 (50 MB)

Partition 2 (50 MB)

Partition 3 (50 MB)

Partition 4 (50 MB)

Partition 5 (90 MB)

Partition 6 (150 MB)

Partition 1 (50 MB)

Partition 2 (50 MB)

Partition 3 (50 MB)

Partition 4 (50 MB)

Partition 6-A (50 MB)

Partition 6-B (50 MB)

Partition 6-C (50 MB)

Partition 5 (90 MB)
Partition 5-A (45 MB)

Partition 5-B (45 MB)

Partition 1 (50 MB)

Partition 2 (50 MB)

Partition 3 (50 MB)

Partition 4 (50 MB)

https://www.google.com/url?q=https://databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html&sa=D&source=editors&ust=1704416431794915&usg=AOvVaw1KS9Ne1blC8Q5X6_icH7Dt
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Skew - Mitigation
Three “common” solutions

1. Filter skewed values

2. Databricks’ [proprietary] Skew Hint
• Easier to add a single hint than to salt your keys

• Great option for version of Spark 2.x

3. Adaptive Query Execution (enabled by default in Spark 3.1)
4. Salt the join keys forcing even distribution during the shuffle

• If none of the options are suitable, salting is the only alternative

• It involves breaking a large skewed partition into smaller ones by adding random integers as 
suffixes.
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2. Databricks’ [proprietary] Skew Hint
• Easier to add a single hint than to salt your keys

• Great option for version of Spark 2.x

3. Adaptive Query Execution (enabled by default in Spark 3.1)
4. Salt the join keys forcing even distribution during the shuffle

• If none of the options are suitable, salting is the only alternative

• It involves breaking a large skewed partition into smaller ones by adding random integers as 
suffixes.
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Skew Mitigation
See Experiment #1596

See SQL diagram for Step E showing skew=true

Step Code Duration Tasks Health Shuffle Spill

C Baseline ~30 min 832 Bad 0 / 0 / ~100 KB / ~400 MB / ~3 GB ~50 GB

D Skew Hint ~35 min 832 Mostly OK ~135 MB / ~175 MB / ~180 MB / ~200 MB / ~1 GB ~4 GB

E w/AQE ~25 min 1489 Excellent 0 / ~115 MB / ~115 MB / ~125 MB / ~130 MB 0

F Salted ~37 min 832 OK ~400K / ~70 MB / ~150 MB / ~290 MB / ~790 MB 0

https://www.google.com/url?q=https://www.databricks.training/spark-ui-simulator/experiment-1596/v002-S/index.html&sa=D&source=editors&ust=1704416431868995&usg=AOvVaw0IEzIjdKaqkY_yl8Mv2b0g
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Unhandled Skew

Some transformations can be processed by only one worker when data is not evenly 
distributed. 

Transformations like applyInPandas and Window functions require a full shuffle of the data.

Occurs when a transformation is applied to large tables grouped by low cardinality columns. 

There is a potential OOM risk if certain groups are too large to fit in the memory of the worker

See Experiment #2755

Step Tasks Stage Execution Time

A - GroupBy + ApplyInPandas 1 ~31 secs

B - Window function skew on 
partition by column

1 ~1.7 mins

https://www.google.com/url?q=https://www.databricks.training/spark-ui-simulator/experiment-2755/v004-P/index.html&sa=D&source=editors&ust=1704416431933410&usg=AOvVaw3OqKeC_abgoSnuqiYkabm0
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● AQE does not support structure streaming - forEachBatch() - so it is 
automatically disabled in these cases.

● Side effect is that we have no auto handling of data skew on joins

● Mitigation: Use skew hints or broadcast joins if possible

AQE & Streaming
Other Cases of Unhandled Skew
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Serialization
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• Spark SQL and DataFrame instructions are highly optimized

• All UDFs must be serialized and distributed to each executor

• The parameters and return value of each UDF must be converted for 
each row of data before distributing to executors

• Python UDFs takes an even harder hit
○ The Python code has to be pickled

○ Spark must instantiate a Python interpreter in each and every Executor

○ The conversion of each row from Python to DataFrame costs even more

Experiment #4538

Performance problems with serialization

https://www.google.com/url?q=https://www.databricks.training/spark-ui-simulator/experiment-4538/v002-P&sa=D&source=editors&ust=1704416431983431&usg=AOvVaw0CF6D-yRHebhNrm-2u-VK0
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Mitigating serialization issues

• Don’t use UDFs
• I challenge you to find a set of transformations that cannot be done with the built-in, 

continuously optimized, community supported, higher-order functions

• If you have to use UDFs in Python (common for Data Scientist) use the 
Vectorized UDFs as opposed to the stock Python UDFs

• If you have to use UDFs in Scala use Typed Transformations
as opposed to the stock Scala UDFs

• Resist the temptation to use UDFs to integrate Spark code with
existing business logic - porting that logic to Spark almost always pays off 
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Step Type Scala/Java 
Duration Python Duration

C Baseline ~3 min ~3 min

D Higher-order Functions ~25 min ~25 min

E UDFs ~35 min ~105 min

F - Scala Typed Transformations ~25 min n/a

F - Python Panda/Vectorized UDFs n/a > 70 min

Same

Bad

Really Bad

Serialization - Python vs Scala
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Fine-Tuning: 
Choosing the Right 
Cluster

72
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• Analysis and ad-hoc & DE 
and DS development

• Shared clusters but best 
practice is to separate by 
team or workload

• Anytime an 
already-running cluster is 
utilized(including API or 
scheduled)

• More expensive

Cluster Types
      

• Run on ephemeral clusters 
that are created for the job, 
and terminate on 
completion

• Pre-scheduled or 
submitted via API

• Single-user
• Great for isolation and 

debugging
• Production and repeat 

workloads
• Lower cost

• Built for high concurrency 
ad-hoc SQL analytics and 
BI serving

• Photon included

• Recommended shared 
warehouse for ad-hoc SQL 
analytics, isolated 
warehouse for specific 
workloads

• Serverless available for 
instant startup

ALL PURPOSE COMPUTE JOBS COMPUTE SQL WAREHOUSE
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• All Purpose Compute is a 
Databricks cluster 
designed to handle various 
workloads, including 
streaming workloads.

• It auto-scales, ensuring 
latency SLAs and data loss 
during traffic spikes.

• security considerations 
must be considered as 
auto-scaling can introduce 
additional risks.

• More expensive

Cluster Types
      

• Run on ephemeral clusters 
that are created for the job, 
and terminate on 
completion

• Pre-scheduled or 
submitted via API

• Single-user
• Great for isolation and 

debugging
• Production and repeat 

workloads
• Lower cost

• Built for high concurrency 
ad-hoc SQL analytics and 
BI serving

• Photon included

• Recommended shared 
warehouse for ad-hoc SQL 
analytics, isolated 
warehouse for specific 
workloads

• Serverless available for 
instant startup

ALL PURPOSE COMPUTE JOBS COMPUTE SQL WAREHOUSE
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Autoscaling
• Dynamically resizes cluster based on workload

• Can run faster than a statically-sized, under-provisioned cluster

• Can reduce overall costs compared to a statically-sized cluster

• Setting range for the number of workers requires some experimenting

Use Case Autoscaling Range

Ad-hoc usage or business analytics Large variance

Production batch jobs Not needed or buffer on upper limit

Streaming Available in Delta Live Tables
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Spot Instances
• Use spot instances to use spare VM instances for below market rate

• Great for ad-hoc/shared clusters

• Not recommended for jobs with mission critical SLAs

• Never use for driver!

• Combine on-demand and spot instances (with custom spot price) to 
tailor clusters to different use cases

SLA Spot or On-Demand

Non-mission critical jobs Driver on-demand and workers spot

Workflows with tight SLAs Use spot instance w/fallback to 
on-demand
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• Save on compute costs
• ETL customers are saving up to 40% on their 

compute cost

• Fast query performance
• Built for modern hardware with up to 12x better 

price/perf compared to other cloud data 
warehouses

• No code changes
• Spark APIs that can do exploration, ETL, big 

data, small data, low latency, high concurrency, 
batch, and streaming

• Broad language support
• Support for SQL, Python, Scala, R, and Java

Photon
World record achieving query engine with zero tuning or setup
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• Save on compute costs
• ETL customers are saving up to 40% on their 

compute cost

• Fast query performance
• Built for modern hardware with up to 12x better 

price/perf compared to other cloud data 
warehouses

• No code changes
• Spark APIs that can do exploration, ETL, big 

data, small data, low latency, high concurrency, 
batch, and streaming

• Broad language support
• Support for SQL, Python, Scala, R, and Java

Photon
Photon is a high-speed and efficient query execution engine that 
specializes in rapid data processing and analytics
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Architectural Considerations

79

Isolated Clusters & Warehouses to Avoid Resource Contention

1. Ephemeral Job compute

○ Jobs - Isolated compute for ingestion + ETL jobs, can be sized/optimized 
for that workload, run on a schedule

○ Only charged for when the job is running

2. Shared development clusters

○ All-purpose - Auto-scale, auto-pause to only use when teams are actively 
developing, only resources needed

○ Recommended to develop and test with a subset of the full dataset

3. Shared SQL warehouse for ad-hoc analysis

○ SQL warehouse - Auto-scale, auto-pause to only use when teams are 
actively querying, only resources needed

○ Serverless available for instant startup, shutdown to reduce idle time

4. Separate SQL warehouse for BI reporting

○ Size appropriately for BI needs, avoid contention with other processes

Note: Most other big data and data warehousing platform architectures 
are monolithic and require tedious, manual workload management

Databricks AWS Reference Architecture
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Cluster Optimization Recommendations

80

1. DS & DE development: all-purpose compute, auto-scale and auto-stop enabled, develop 
& test on a subset of the data

2. Ingestion & ETL jobs: jobs compute, auto-scale enabled and size accordingly to job SLA

3. Ad-hoc SQL analytics: (serverless) SQL warehouse, auto-scale and auto-stop enabled

4. BI Reporting: isolated SQL warehouse, sized according to BI SLAs

5. Best practices:

a. Enable spot instances on worker nodes

b. Use Graviton instances when possible

c. Use the latest LTS Databricks Runtime when possible

d. Use Photon for best TCO when applicable

e. Use latest gen VM, start with general purpose, then test memory/compute optimized


