
©2023 Databricks Inc. — All rights reserved

Performance
Optimization
with Spark and
Delta Lake

©2023 Databricks Inc. — All rights reserved

Lecture: Designing the Foundation

Lecture: Code Optimization

Lecture: Spark Architecture

Follow Along Demo - Spark Simulator

Agenda
Performance Optimization with Spark and Delta Lake

Lecture/Demo: Shuffles

Lecture/Demo: Spill

Lecture/Demo: Skew

Lecture/Demo: Serialization

Lecture: Fine-Tuning -
Choosing the Right Cluster

©2023 Databricks Inc. — All rights reserved

Introduction

We commence with Designing the Foundation, focusing on establishing fundamental principles in
Spark programming. Following this, we delve into Code Optimization, uncovering strategies to
elevate code efficiency and performance. Our exploration further extends to understanding the
intricate layers of Spark Architecture and optimizing clusters for diverse workloads in Fine-Tuning -
Choosing the Right Cluster.

Beyond theory, our sessions offer immersive hands-on experiences. Engage in real-time simulation
through Follow Along - Spark Simulator, and dive deep into critical operational aspects such as
Shuffles, Spill, Skew, alongside understanding the prowess of Serialization in Spark.

This course aims to equip you with comprehensive expertise in advanced data engineering,
leveraging the powerful tools and techniques offered by Databricks.

©2023 Databricks Inc. — All rights reserved

Building Performant Analytics

File Layout

Code
Optimization

Cluster Sizing

©2023 Databricks Inc. — All rights reserved

Designing the
Foundation

5

©2023 Databricks Inc. — All rights reserved

Fundamental Concepts

6

Why some schemas and queries perform faster than others

● Number of bytes read
● Query complexity/computation
● Number of files accessed
● Parallelism

©2023 Databricks Inc. — All rights reserved

Common Performance Bottlenecks

7

Bottleneck Details

Small File Problem ● Listing and metadata operation for too many small files can be expensive
● Can also result in throttling from cloud storage I/O limits

Data Skew ● Large amounts of data skew can result in more work handled by a single executor
● Even if data read in is not skewed, certain transformations can lead to in-memory skew

Processing More
Than Needed ● Traditional data lake platforms often require rewriting entire datasets or partitions

Resource
Contention

● Processing large ingestion, ETL jobs at the same time as ad-hoc and BI queries results in
slow query performance without cluster isolation

Encountered with any big data or MPP system

Before Aggregation After Aggregation by City

©2023 Databricks Inc. — All rights reserved

Avoiding the Small File Problem

8

Automatically handle this common performance challenge in Data Lakes

▪ Too many small files greatly increases overhead
for reads

▪ Too few large files reduces parallelism on reads

▪ Over-partitioning is a common problem

▪ Databricks will automatically tune the size of
Delta Lake tables

▪ Databricks can automatically compact small
files on write with auto-optimize

https://www.google.com/url?q=https://docs.databricks.com/delta/tune-file-size.html&sa=D&source=editors&ust=1704416427342016&usg=AOvVaw0-Rb7H7GmWnorlahPu-iAA
https://www.google.com/url?q=https://docs.databricks.com/delta/tune-file-size.html&sa=D&source=editors&ust=1704416427342272&usg=AOvVaw0wf3-OgHU_IK0JU6pjap9f
https://www.google.com/url?q=https://docs.databricks.com/delta/optimizations/auto-optimize.html&sa=D&source=editors&ust=1704416427342401&usg=AOvVaw2lNxyYyH6se7yYUaVHOHcc

©2023 Databricks Inc. — All rights reserved

Avoiding the Small File Problem

9

Automatically handle this common performance challenge in Data Lakes

▪ Too many small files greatly increases overhead
for reads

▪ Too few large files reduces parallelism on reads

▪ Over-partitioning is a common problem

▪ Databricks will automatically tune the size of
Delta Lake tables

▪ Databricks will automatically compact small
files on write with auto-optimize

https://www.google.com/url?q=https://docs.databricks.com/delta/tune-file-size.html&sa=D&source=editors&ust=1704416427362649&usg=AOvVaw1MVE5N3vLQntIS55-xD3Gl
https://www.google.com/url?q=https://docs.databricks.com/delta/tune-file-size.html&sa=D&source=editors&ust=1704416427362833&usg=AOvVaw3MYgNSZS_Ty2Zl-DatLmkS
https://www.google.com/url?q=https://docs.databricks.com/delta/optimizations/auto-optimize.html&sa=D&source=editors&ust=1704416427362954&usg=AOvVaw2EtxBtcegGDyoEujffR3ly

©2023 Databricks Inc. — All rights reserved

Data Skipping

10

Reducing the amount of data read in reduces processing time

▪ Track file level stats such as min & max to avoid scanning irrelevant files

▪ File-skipping stats are automatically collected on Delta Lake tables

▪ Note: file stats are only collected automatically on the first 32 columns. Make sure the columns
frequently used in joins are in the first 32 cols or modify the number of stats collected

▪ Delta Lake and Z-Order brings this technique known as indexing from RDBMS systems to
the data lake.

▪ Unlike traditional sort-based indexing techniques, Z-Ordering uses multi-dimensional
clustering for more effective data skipping.

SELECT * FROM table WHERE col < 5

SELECT file_name FROM index
WHERE col_min < 5

file_name col_min col_max

file1.csv 6 8

file2.csv 3 10

file3.csv 1 4

https://www.google.com/url?q=https://docs.databricks.com/delta/data-skipping.html%23data-skipping-with-z-order-indexes-for-delta-lake&sa=D&source=editors&ust=1704416427409270&usg=AOvVaw31ayBkxqYT-ZbS--HmgymF
https://www.google.com/url?q=https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html?_ga%3D2.21512306.872631315.1646009164-1468227001.1645719051&sa=D&source=editors&ust=1704416427409577&usg=AOvVaw2lBoCs_pq6k5H3R0nxM8Ka

©2023 Databricks Inc. — All rights reserved

 Understanding Data Skipping Index in Delta Lake

11

Reducing the amount of data read in reduces processing time

▪ Track file level stats such as min & max to avoid scanning irrelevant files

▪ File-skipping stats are automatically collected on Delta Lake tables

▪ Note: file stats are only collected automatically on the first 32 columns. Make sure the columns
frequently used in joins are in the first 32 cols or modify the number of stats collected

▪ Delta Lake and Z-Order brings this technique known as indexing from RDMS systems to
the data lake.

▪ Unlike traditional sort-based indexing techniques, Z-Ordering uses multi-dimensional
clustering for more effective data skipping.

SELECT * FROM table WHERE col < 5

SELECT file_name FROM index
WHERE col_min < 5

file_name col_min col_max

file1.csv 6 8

file2.csv 3 10

file3.csv 1 4

https://www.google.com/url?q=https://docs.databricks.com/delta/data-skipping.html%23data-skipping-with-z-order-indexes-for-delta-lake&sa=D&source=editors&ust=1704416427464700&usg=AOvVaw14BrtCzOTyxUWdC3qEJETY
https://www.google.com/url?q=https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html?_ga%3D2.21512306.872631315.1646009164-1468227001.1645719051&sa=D&source=editors&ust=1704416427465159&usg=AOvVaw2cLbSwVyFYgCo_ubNHXXZH

©2023 Databricks Inc. — All rights reserved

Ingestion Time Clustering
Out of the box data skipping with no partitioning or z-order required

000.csv

T + 5T + 3T + 1T + 0

001.csv 997.csv 998.csv 999.csv

Setup: Store Sales table with data naturally ordered by date

Higher is better

12

AWS GCP

Status GA GA

Preserves natural clustering across
all Delta operations (DML, ingestion,
maintenance)

19x better query performance
out of the box

©2023 Databricks Inc. — All rights reserved

Ingestion Time
Out of the box data skipping with no partitioning or z-order required

000.csv

T + 5T + 3T + 1T + 0

001.csv 997.csv 998.csv 999.csv

Setup: Store Sales table with data naturally ordered by date

Higher is better

13

AWS GCP

Status GA GA

Preserves natural clustering across
all Delta operations (DML, ingestion,
maintenance)

19x better query performance
out of the box

©2023 Databricks Inc. — All rights reserved

Table Statistics
Keeping table statistics to date for best results with Cost Based Optimizer

• Collects statistics on all columns in table
• Helps Adaptive Query Execution

• Choose proper join type
• Select correct build side in a hash-join
• Calibrating the join order in a multi-way join

ANALYZE TABLE mytable COMPUTE STATISTICS FOR ALL COLUMNS

14

©2023 Databricks Inc. — All rights reserved

Table Statistics
Keeping table statistics to date for best results with Cost Based Optimizer

1. ANALYZE TABLE for Metastore Statistics:
● When a table is defined, use ANALYZE TABLE to put statistics in the metastore.
● Usage:

● Statistics are utilized by the Cost-Based Optimizer (CBO) and Adaptive Query Execution (AQE).
● Maintenance:

● Manual process.
● Update statistics when significant data changes occur (e.g., 10% data change).

2. Delta Table Statistics for Job Input:
● Delta tables have per-file statistics determining which files are part of the job input.
● Usage:

● Used to optimize job input, particularly for Delta Lake functionality.
● Maintenance:

● Automatically managed by Delta, no manual intervention required.
3. Adaptive Query Execution (AQE) Stages:

● AQE gathers stats on earlier stages to potentially modify later stages.
● Usage:

● Enhances execution plans dynamically during runtime.
● Maintenance:

● Partly automatic, but understanding when AQE may modify stages is essential for optimization.

15

©2023 Databricks Inc. — All rights reserved

Foundational Recommendations
• Leverage Databricks and Delta Lake to take advantage of auto-tuning:

• Auto-tuning file size and auto-optimize to avoid small file problem
• Automatic skew handling with AQE
• Natural sort order preservation removes need for partitioning tables < 1 TB

• Leverage data skipping with Z-Order and create Z-Order indexes on high
cardinality columns frequently used in filters (weekly maintenance job)

• Collect table stats, especially on columns used for joins (weekly
maintenance job)

• Use partitioning for data skipping on low cardinality columns frequently
used in filters (i.e. year, month, day) - only for tables > 1 TB

• Leverage SQL DML capabilities with Delta Lake to move to a CDC
architecture and only process change data.

• Leverage isolated job clusters and SQL warehouses to avoid resource
contention

16

https://www.google.com/url?q=https://docs.databricks.com/delta/optimizations/auto-optimize.html&sa=D&source=editors&ust=1704416428215244&usg=AOvVaw1XI3SzNar-zIzBQlz4mZKg
https://www.google.com/url?q=https://databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html&sa=D&source=editors&ust=1704416428215593&usg=AOvVaw0C1DRko_F_cI0_M8OhFQ1a
https://www.google.com/url?q=https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html?_ga%3D2.21512306.872631315.1646009164-1468227001.1645719051&sa=D&source=editors&ust=1704416428215943&usg=AOvVaw3X4HH02xHMOa_u_uNnVs5W
https://www.google.com/url?q=https://databricks.com/blog/2020/09/29/diving-into-delta-lake-dml-internals-update-delete-merge.html&sa=D&source=editors&ust=1704416428216210&usg=AOvVaw304YnXGOCYf6jIpVteICdp

©2023 Databricks Inc. — All rights reserved

Foundational Recommendations
• Auto-Tuning File Size and Auto-Optimize

• Auto-Compact (Per Job): Automatically adjusts file size for each job.
• Optimize (Global): Global optimization to avoid small file issues.

• Automatic Skew Handling with AQE
• Natural Sort Order Preservation

• Removes the need for partitioning tables < 1 TB.

• Leverage Data Skipping
• Use Z-Order and create indexes on high cardinality columns for efficient filtering (weekly maintenance job).

• Collect Table Stats
• Especially on columns used for joins (weekly maintenance job).

• Use Partitioning
• For data skipping on low cardinality columns for tables > 1 TB (e.g., year, month, day).

• Leverage SQL DML Capabilities
• Utilize Delta Lake for Change Data Capture (CDC) architecture and process only change data.

• Leverage Isolated Job Clusters and SQL Warehouses
• Avoid resource contention.

17

©2023 Databricks Inc. — All rights reserved

Delta Optimizer

• Field managed tool available today to automate foundational optimizations
(Z-Order and ANALYZE TABLE)

• Pulls and analyzes the query history + Delta transaction logs and builds a
data profile to determine the most important columns that each tables
should be Z-ordered by.

• Aims to drastically reduce the amount of manual discovery and tuning
users must do to properly optimize their delta tables, especially when the
primary query interface is through a DBSQL Warehouse (as an analyst
using SQL or a BI tool that auto-generates SQL)

©2023 Databricks Inc. — All rights reserved

Assess and Debug
Spark Applications

19

©2023 Databricks Inc. — All rights reserved

Executing a Spark Application

Job

Job

Job

Stage

Task

TaskStage

Task

Spark
application

Data processing tasks run in parallel across a cluster of machines

©2023 Databricks Inc. — All rights reserved

ExecutorExecutor Executor

Core Core CoreTask

Spark Architecture

TaskTask

Worker nodes

Driver

©2023 Databricks Inc. — All rights reserved

Driver

Executor

Data

Cluster

Scenario: Filter out brown pieces from these candy bags

Core

Partition

©2023 Databricks Inc. — All rights reserved

B C D F

G I K LG I K L

A E

H J

Remove brown pieces from the bag,
place the rest in the corner

Student A, get bag #1,
Student B, get bag #2,
Student C, get bag #3…

©2023 Databricks Inc. — All rights reserved

B D F

G I K L

A E

H J

C

Students A, E, H, J,
count bags 13, 14, 15, 16

©2023 Databricks Inc. — All rights reserved

A B C D E F

G H I J K L

All done!

©2023 Databricks Inc. — All rights reserved

Scenario 2: Count total pieces in candy bags

©2023 Databricks Inc. — All rights reserved

We need to count the total
pieces in these candy bags

A B C D E F

G H I J K L

Stage 1: Local Count

©2023 Databricks Inc. — All rights reserved

A D F

G H J K

B

I L

Stage 1: Local Count

C E

Students B, E, I, L, count these
four bags

©2023 Databricks Inc. — All rights reserved

5 6

4 5

A D F

G H J K

Stage 1: Local Count

B

I L

EC

Students B, E, I, L,
commit your findings

©2023 Databricks Inc. — All rights reserved

5

5
6

4

A D F

H J K

B

I L

EC

G

Stage 2: Global Count
Student G, total counts from

students B, E, I, L

©2023 Databricks Inc. — All rights reserved

Stage 2: Global CountStage 1: Local Count

A D F

H J K

B

I L

EC

20

G

5 6

4 5

A D F

G H J K

B

I L

EC

©2023 Databricks Inc. — All rights reserved

Unresolved
 Logical Plan Logical Plan Optimized

Logical Plan
Physical

Plans

COST BASED OPTIMIZATION

WHOLE-STAGE
CODE GENERATION

M
et

ad
at

a
 C

at
al

og

C
os

t
M

od
el

Selected
Physical Plan

Physical
Plans

Physical
Plans

Query

C
at

al
ys

t
C

at
al

og

ANALYSIS

LOGICAL OPTIMIZATION

PHYSICAL PLANNING

RDDs

Runtime Statistics

ADAPTIVE QUERY EXECUTION

Enabled by default as of Spark 3.2

Query Optimization

©2023 Databricks Inc. — All rights reserved

Code Optimization Recommendations

33

1. In production jobs, avoid operations that trigger an action besides
reading and writing files. These include count(), display(), collect().

2. Avoid operations that will force all computation into the driver node
such as using single threaded python/pandas. Use Pandas API on Spark
instead to distribute pandas functions.

3. Avoid python UDFs which execute row-by-row. Instead use native
pyspark functions or Pandas UDFs for vectorized UDFs.

4. Use Dataframes or Datasets instead of RDDs. RDDs cannot take
advantage of the cost-based optimizer.

https://www.google.com/url?q=https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html&sa=D&source=editors&ust=1704416429021760&usg=AOvVaw2GvXi27OeeVhoAkE_7QPLu
https://www.google.com/url?q=https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html&sa=D&source=editors&ust=1704416429022257&usg=AOvVaw3ADEjxlXp6svFGeGeqTj7C

©2023 Databricks Inc. — All rights reserved

Spark UI Simulator

34

©2023 Databricks Inc. — All rights reserved

• Notebook All code
• Spark UI Jobs / Stages / Storage / Environment / Executors / SQL tabs
• Cluster Driver, Worker, Software version
• Lab Online quiz
• Source Notebook Export notebook to import into a workspace
• /mnt/training How to edit paths to point to dataset files
• Home Return to all experiments
• About General information

https://www.databricks.training/spark-ui-simulator
The Spark UI Simulator

https://www.google.com/url?q=https://www.databricks.training/spark-ui-simulator&sa=D&source=editors&ust=1704416429450690&usg=AOvVaw0GUbMciZURT3iwp3Zg9X7n

©2023 Databricks Inc. — All rights reserved

Shuffles

©2023 Databricks Inc. — All rights reserved

Shuffles

Shuffling is a side effect of wide transformations

• join()

• distinct()

• groupBy()

• orderBy()

And technically some actions, e.g. count()

©2023 Databricks Inc. — All rights reserved

Shuffles

Shuffling is a side effect of wide transformations

• join()

• distinct()

• groupBy()

• orderBy()

And technically some actions, e.g. count()

©2023 Databricks Inc. — All rights reserved

Shuffles At A Glance

©2023 Databricks Inc. — All rights reserved

Shuffles At A Glance

©2023 Databricks Inc. — All rights reserved

Shuffles At A Glance

©2023 Databricks Inc. — All rights reserved

Shuffles At A Glance

©2023 Databricks Inc. — All rights reserved

Shuffles At A Glance

©2023 Databricks Inc. — All rights reserved

Shuffles At A Glance

©2023 Databricks Inc. — All rights reserved

Shuffles At A Glance

©2023 Databricks Inc. — All rights reserved

Shuffles At A Glance

©2023 Databricks Inc. — All rights reserved

Shuffles At A Glance

©2023 Databricks Inc. — All rights reserved

Shuffles At A Glance

©2023 Databricks Inc. — All rights reserved

Shuffles - Mitigation

• Reduce network IO by using
fewer, larger workers

• Speed up shuffle reads & writes
by using NVMe & SSDs

• Reduce amount of shuffled data
• Remove unnecessary

columns
• Filter out unnecessary

records preemptively
• Denormalize datasets, esp when

shuffle is rooted in a join

Reevaluate join strategy:

• Reordering the join
• Bucketing
• Broadcast Hash Join
• Shuffle Hash Joins (default

for Databricks Photon)
• Sort-Merge Join (default for

OS Spark)

©2023 Databricks Inc. — All rights reserved

Shuffles - Mitigation

• Reduce network IO by using
fewer, larger workers

• Speed up shuffle reads & writes
by using NVMe & SSDs

• Reduce amount of shuffled data
• Remove unnecessary

columns
• Filter out unnecessary

records preemptively
• Denormalize datasets, esp when

shuffle is rooted in a join

Reevaluate join strategy:

• Reordering the join
• Dynamically Switching Join

Strategies
• Broadcast Hash Join
• Shuffle Hash Joins (default

for Databricks Photon)
• Sort-Merge Join (default for

OS Spark)

©2023 Databricks Inc. — All rights reserved

Spark Join Strategies
Spark Join Strategies are named after their associated distribution and join
strategies

Distribution Strategy Join Type Join Strategy Name

Broadcast Hash Join Broadcast-Hash Join

Shuffle Hash Join Shuffle-Hash Join

Shuffle Sort Merge Join Shuffle-Sort Merge Join

Broadcast Nested Loop Broadcast-Nested Loop
Join

©2023 Databricks Inc. — All rights reserved

Broadcast

Optimizing Joins: Reordering

1 billion

Broadcast

Broadcast

Full Shuffle

1 million 1K

1 billion

of table records

1 trillion 1 trillion

1 trillion

1 million 1K

1K

Reduce records per shuffle (mostly automatic w/ AQE, CBO)

©2023 Databricks Inc. — All rights reserved

AQE - Tuning Shuffle Partitions

Net effect is fewer partitions for subsequent stages

Before
Partition 0 (70 MB)

Partition 2 (30 MB)

Partition 3 (20 MB)

Partition 4 (10 MB)

Partition 1 (50 MB)

After

Partition 0 (70 MB)

Coalesced Partition (80 MB)
Coalesced Partition (30 MB)

Partition 2 (30 MB)

Partition 3 (20 MB)

Partition 4 (10 MB)

Over simplifying, but we now only need to manage
spark.sql.shuffle.partitions for the expected maximum

©2023 Databricks Inc. — All rights reserved

Step Total
Duration

Number of
Partitions

Stage Details
Conclusions

Query Plan
Optimization

Step B ~1.5 minutes 825 / 200 Bad distribution / Overhead
@200 partitions are 4x Larger

Potential Spill

-none-

Step C ~1 minute 825 / 832 Horrible distribution / Overhead -none-

Step D ~¾ of a minute 825 / 17 Good Distribution / Minor Overhead CustomShuffleReader

AQE - Tuning Shuffle Partitions
See Experiment #2653

https://www.google.com/url?q=https://www.databricks.training/spark-ui-simulator/experiment-2653/v004-S/index.html&sa=D&source=editors&ust=1704416430532695&usg=AOvVaw3UvWyoptgdaqRrTxS55h5P

©2023 Databricks Inc. — All rights reserved

Spill

55

©2023 Databricks Inc. — All rights reserved

● Spill is the term used to refer to the act of moving
data from RAM to disk, and later back into RAM again

● This occurs when a given partition is simply too large to fit into RAM

● In this case, Spark is forced into [potentially] expensive
disk reads and writes to free up local RAM

● All of this just to avoid the
dreaded OOM Error

Spill

©2023 Databricks Inc. — All rights reserved

● Set spark.sql.files.maxPartitionBytes too high (default is 128 MB)

● The explode() of even a small array

● The join() or crossJoin() of two tables which generates lots of new
rows

● The join() or crossJoin() of two tables by a skewed key

● The groupBy() where the column has low cardinality

● The countDistinct() and size(collect_set())

● Setting spark.sql.shuffle.partitions too low or wrong use of
repartition()

Spill - Examples

©2023 Databricks Inc. — All rights reserved

In the Spark UI, spill is represented by two values:

● Spill (Memory): For the partition that was spilled,
this is the size of that data as it existed in memory

● Spill (Disk): Likewise, for the partition that was spilled,
this is the size of the data as it existed on disk

The two values are always presented together

The size on disk will always be smaller due to the natural compression
gained in the act of serializing that data before writing it to disk

Spill - Memory & Disk

©2023 Databricks Inc. — All rights reserved

Spill Listener - Examples, Review

Step Min 25th Median 75th Max Total

B - shuffle ~2 GB / ~550 MB ~2 GB / ~560 MB ~2 GB / ~565 MB ~2 GB / ~570 MB ~2 GB / ~580 MB ~33 GB

C - union ~2 GB / ~110 MB ~2 GB / ~120 MB ~2 GB / ~125 MB ~2 GB / ~130 MB ~2 GB / ~150 MB ~60 GB

D - explode 0 / ~1.5 GB 0 / ~1.5 GB 0 / ~1.5 GB 0 / ~1.5 GB 0 / ~1.5 GB ~750 GB

E - join* 0 / 0 0 / 0 0 / 0 0 / 0 6 GB / 3 GB ~50 GB

See Experiment #6518

• In Step B, the config value spark.sql.shuffle.partitions is not managed
• Steps C & D simply grow too large as a result of their transformations
• In Step E the spill is a manifestation of the underlying skew

https://www.google.com/url?q=https://www.databricks.training/spark-ui-simulator/experiment-6518/v002-S/index.html&sa=D&source=editors&ust=1704416431524690&usg=AOvVaw2_WlOXazzFWOKt6x5At7MY

©2023 Databricks Inc. — All rights reserved

Skew

©2023 Databricks Inc. — All rights reserved

 Before aggregation After aggregation by city

Skew - Before and After

©2023 Databricks Inc. — All rights reserved

Handling Data Skew

62

Data skew is unavoidable, Databricks handles this automatically

▪ In MPP systems, data skew significantly
impacts performance because some
workers are processing much more data

▪ Most cloud DWs require a manual, offline
redistribution to solve for data skew

▪ With Adaptive Query Execution Spark
automatically breaks down larger partitions
into smaller, similar sized partitions

Partition 6 (150 MB)

Partition 1 (50 MB)

Partition 2 (50 MB)

Partition 3 (50 MB)

Partition 4 (50 MB)

Partition 5 (90 MB)

Partition 6 (150 MB)

Partition 1 (50 MB)

Partition 2 (50 MB)

Partition 3 (50 MB)

Partition 4 (50 MB)

Partition 6-A (50 MB)

Partition 6-B (50 MB)

Partition 6-C (50 MB)

Partition 5 (90 MB)
Partition 5-A (45 MB)

Partition 5-B (45 MB)

Partition 1 (50 MB)

Partition 2 (50 MB)

Partition 3 (50 MB)

Partition 4 (50 MB)

https://www.google.com/url?q=https://databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html&sa=D&source=editors&ust=1704416431794915&usg=AOvVaw1KS9Ne1blC8Q5X6_icH7Dt

©2023 Databricks Inc. — All rights reserved

Skew - Mitigation
Three “common” solutions

1. Filter skewed values

2. Databricks’ [proprietary] Skew Hint
• Easier to add a single hint than to salt your keys

• Great option for version of Spark 2.x

3. Adaptive Query Execution (enabled by default in Spark 3.1)
4. Salt the join keys forcing even distribution during the shuffle

• If none of the options are suitable, salting is the only alternative

• It involves breaking a large skewed partition into smaller ones by adding random integers as
suffixes.

©2023 Databricks Inc. — All rights reserved

Skew - Mitigation
Three “common” solutions

1. Filter skewed values

2. Databricks’ [proprietary] Skew Hint
• Easier to add a single hint than to salt your keys

• Great option for version of Spark 2.x

3. Adaptive Query Execution (enabled by default in Spark 3.1)
4. Salt the join keys forcing even distribution during the shuffle

• If none of the options are suitable, salting is the only alternative

• It involves breaking a large skewed partition into smaller ones by adding random integers as
suffixes.

©2023 Databricks Inc. — All rights reserved

Skew Mitigation
See Experiment #1596

See SQL diagram for Step E showing skew=true

Step Code Duration Tasks Health Shuffle Spill

C Baseline ~30 min 832 Bad 0 / 0 / ~100 KB / ~400 MB / ~3 GB ~50 GB

D Skew Hint ~35 min 832 Mostly OK ~135 MB / ~175 MB / ~180 MB / ~200 MB / ~1 GB ~4 GB

E w/AQE ~25 min 1489 Excellent 0 / ~115 MB / ~115 MB / ~125 MB / ~130 MB 0

F Salted ~37 min 832 OK ~400K / ~70 MB / ~150 MB / ~290 MB / ~790 MB 0

https://www.google.com/url?q=https://www.databricks.training/spark-ui-simulator/experiment-1596/v002-S/index.html&sa=D&source=editors&ust=1704416431868995&usg=AOvVaw0IEzIjdKaqkY_yl8Mv2b0g

©2023 Databricks Inc. — All rights reserved

Unhandled Skew

Some transformations can be processed by only one worker when data is not evenly
distributed.

Transformations like applyInPandas and Window functions require a full shuffle of the data.

Occurs when a transformation is applied to large tables grouped by low cardinality columns.

There is a potential OOM risk if certain groups are too large to fit in the memory of the worker

See Experiment #2755

Step Tasks Stage Execution Time

A - GroupBy + ApplyInPandas 1 ~31 secs

B - Window function skew on
partition by column

1 ~1.7 mins

https://www.google.com/url?q=https://www.databricks.training/spark-ui-simulator/experiment-2755/v004-P/index.html&sa=D&source=editors&ust=1704416431933410&usg=AOvVaw3OqKeC_abgoSnuqiYkabm0

©2023 Databricks Inc. — All rights reserved

● AQE does not support structure streaming - forEachBatch() - so it is
automatically disabled in these cases.

● Side effect is that we have no auto handling of data skew on joins

● Mitigation: Use skew hints or broadcast joins if possible

AQE & Streaming
Other Cases of Unhandled Skew

©2023 Databricks Inc. — All rights reserved

Serialization

©2023 Databricks Inc. — All rights reserved

• Spark SQL and DataFrame instructions are highly optimized

• All UDFs must be serialized and distributed to each executor

• The parameters and return value of each UDF must be converted for
each row of data before distributing to executors

• Python UDFs takes an even harder hit
○ The Python code has to be pickled

○ Spark must instantiate a Python interpreter in each and every Executor

○ The conversion of each row from Python to DataFrame costs even more

Experiment #4538

Performance problems with serialization

https://www.google.com/url?q=https://www.databricks.training/spark-ui-simulator/experiment-4538/v002-P&sa=D&source=editors&ust=1704416431983431&usg=AOvVaw0CF6D-yRHebhNrm-2u-VK0

©2023 Databricks Inc. — All rights reserved

Mitigating serialization issues

• Don’t use UDFs
• I challenge you to find a set of transformations that cannot be done with the built-in,

continuously optimized, community supported, higher-order functions

• If you have to use UDFs in Python (common for Data Scientist) use the
Vectorized UDFs as opposed to the stock Python UDFs

• If you have to use UDFs in Scala use Typed Transformations
as opposed to the stock Scala UDFs

• Resist the temptation to use UDFs to integrate Spark code with
existing business logic - porting that logic to Spark almost always pays off

©2023 Databricks Inc. — All rights reserved

Step Type Scala/Java
Duration Python Duration

C Baseline ~3 min ~3 min

D Higher-order Functions ~25 min ~25 min

E UDFs ~35 min ~105 min

F - Scala Typed Transformations ~25 min n/a

F - Python Panda/Vectorized UDFs n/a > 70 min

Same

Bad

Really Bad

Serialization - Python vs Scala

©2023 Databricks Inc. — All rights reserved

Fine-Tuning:
Choosing the Right
Cluster

72

©2023 Databricks Inc. — All rights reserved

• Analysis and ad-hoc & DE
and DS development

• Shared clusters but best
practice is to separate by
team or workload

• Anytime an
already-running cluster is
utilized(including API or
scheduled)

• More expensive

Cluster Types

• Run on ephemeral clusters
that are created for the job,
and terminate on
completion

• Pre-scheduled or
submitted via API

• Single-user
• Great for isolation and

debugging
• Production and repeat

workloads
• Lower cost

• Built for high concurrency
ad-hoc SQL analytics and
BI serving

• Photon included

• Recommended shared
warehouse for ad-hoc SQL
analytics, isolated
warehouse for specific
workloads

• Serverless available for
instant startup

ALL PURPOSE COMPUTE JOBS COMPUTE SQL WAREHOUSE

©2023 Databricks Inc. — All rights reserved

• All Purpose Compute is a
Databricks cluster
designed to handle various
workloads, including
streaming workloads.

• It auto-scales, ensuring
latency SLAs and data loss
during traffic spikes.

• security considerations
must be considered as
auto-scaling can introduce
additional risks.

• More expensive

Cluster Types

• Run on ephemeral clusters
that are created for the job,
and terminate on
completion

• Pre-scheduled or
submitted via API

• Single-user
• Great for isolation and

debugging
• Production and repeat

workloads
• Lower cost

• Built for high concurrency
ad-hoc SQL analytics and
BI serving

• Photon included

• Recommended shared
warehouse for ad-hoc SQL
analytics, isolated
warehouse for specific
workloads

• Serverless available for
instant startup

ALL PURPOSE COMPUTE JOBS COMPUTE SQL WAREHOUSE

©2023 Databricks Inc. — All rights reserved

Autoscaling
• Dynamically resizes cluster based on workload

• Can run faster than a statically-sized, under-provisioned cluster

• Can reduce overall costs compared to a statically-sized cluster

• Setting range for the number of workers requires some experimenting

Use Case Autoscaling Range

Ad-hoc usage or business analytics Large variance

Production batch jobs Not needed or buffer on upper limit

Streaming Available in Delta Live Tables

©2023 Databricks Inc. — All rights reserved

Spot Instances
• Use spot instances to use spare VM instances for below market rate

• Great for ad-hoc/shared clusters

• Not recommended for jobs with mission critical SLAs

• Never use for driver!

• Combine on-demand and spot instances (with custom spot price) to
tailor clusters to different use cases

SLA Spot or On-Demand

Non-mission critical jobs Driver on-demand and workers spot

Workflows with tight SLAs Use spot instance w/fallback to
on-demand

©2023 Databricks Inc. — All rights reserved

• Save on compute costs
• ETL customers are saving up to 40% on their

compute cost

• Fast query performance
• Built for modern hardware with up to 12x better

price/perf compared to other cloud data
warehouses

• No code changes
• Spark APIs that can do exploration, ETL, big

data, small data, low latency, high concurrency,
batch, and streaming

• Broad language support
• Support for SQL, Python, Scala, R, and Java

Photon
World record achieving query engine with zero tuning or setup

©2023 Databricks Inc. — All rights reserved

• Save on compute costs
• ETL customers are saving up to 40% on their

compute cost

• Fast query performance
• Built for modern hardware with up to 12x better

price/perf compared to other cloud data
warehouses

• No code changes
• Spark APIs that can do exploration, ETL, big

data, small data, low latency, high concurrency,
batch, and streaming

• Broad language support
• Support for SQL, Python, Scala, R, and Java

Photon
Photon is a high-speed and efficient query execution engine that
specializes in rapid data processing and analytics

©2023 Databricks Inc. — All rights reserved

Architectural Considerations

79

Isolated Clusters & Warehouses to Avoid Resource Contention

1. Ephemeral Job compute

○ Jobs - Isolated compute for ingestion + ETL jobs, can be sized/optimized
for that workload, run on a schedule

○ Only charged for when the job is running

2. Shared development clusters

○ All-purpose - Auto-scale, auto-pause to only use when teams are actively
developing, only resources needed

○ Recommended to develop and test with a subset of the full dataset

3. Shared SQL warehouse for ad-hoc analysis

○ SQL warehouse - Auto-scale, auto-pause to only use when teams are
actively querying, only resources needed

○ Serverless available for instant startup, shutdown to reduce idle time

4. Separate SQL warehouse for BI reporting

○ Size appropriately for BI needs, avoid contention with other processes

Note: Most other big data and data warehousing platform architectures
are monolithic and require tedious, manual workload management

Databricks AWS Reference Architecture

©2023 Databricks Inc. — All rights reserved

Cluster Optimization Recommendations

80

1. DS & DE development: all-purpose compute, auto-scale and auto-stop enabled, develop
& test on a subset of the data

2. Ingestion & ETL jobs: jobs compute, auto-scale enabled and size accordingly to job SLA

3. Ad-hoc SQL analytics: (serverless) SQL warehouse, auto-scale and auto-stop enabled

4. BI Reporting: isolated SQL warehouse, sized according to BI SLAs

5. Best practices:

a. Enable spot instances on worker nodes

b. Use Graviton instances when possible

c. Use the latest LTS Databricks Runtime when possible

d. Use Photon for best TCO when applicable

e. Use latest gen VM, start with general purpose, then test memory/compute optimized

