& Deep Dive Iinto
Structured Streaming

Tathagata “TD” Das
W @tathadas

Spark Surmmit 2016 databricks

Who am I7?

Project Mgmt. Committee (PMC) member of Apache Spark
Started Spark Streaming in grad school - AMPLab, UC Berkeley

Software engineer at Databricks and involved with all things
streaming in Spark

€databricks

Streaming In Apache Spark

Spark Streaming changed how people write streaming apps

-unctional, concise and expressive
SOL EStreaming MLEHD GraphX
-ault-tolerant state management

Spark Core

Unified stack with batch processing

More than 50% users consider most important partof Apache Spark

€databricks

Streaming apps are
growing more complex

€databricks

Streaming computations
don't run in isolation

Need to interact with batch data,
interactive analysis, machine learning, etc.

€databricks

Use case: lol Device Monitoring

Anomaly detection
- Learn modelsoffline <

- Use online+continuous

earning A\

0] events ‘J @
event stream
from Kafka — :> “\\

- TL into long term storage

D)

v - Preventdata loss N 4
Status monitoring - Preventduplicates Interactively
- Handle late data debug issues
- Aggregate on windows - consistency

oneventtime
€databricks

Continuous Applications

Not just streaming any more

€databricks

Pain points with DStreams

1. Processing with event-time, dealing with late data
- DStream APl exposes batch time, hard to incorporate event-time

2. Interoperate streaming with batch AND interactive
- RDD/DStream hassimilar API, butstill requires translation

3. Reasoning about end-to-end guarantees

- Requires carefully constructing sinks that handle failures correctly
- Data consistency in the storage while being updated

€databricks

The simplest way to perform streaming analytics
Is not having to reason about streaming at all

€databricks

New Model

Input: data from source as an
append-only table

Trigger: how frequently to check
input for new data

Query: operationson input

usual map/filter/reduce
new window, session ops

€ databricks

Trigger: every 1 secC
/ 25 §Y

data up
to 2

data up
to 3

New Model

Trigger: every 1 sec
V4 bE §Y
1) 3

Time ﬁﬁﬁ—»
\4 4 \4
Result: final operated table nput data up dats up dats. Up
updated every triggerinterval to 1 to 2 to 3
i
Output: what part of result to write c%:;
to datasink atter every trigger I
» it output output — output
Complete output: Write full result table every time o for data for data for data
up tol T up to 2 T upt03T
complete
OUtpUt output

€databricks

New Model

Trigger: every 1 secC
/ 28 ry

. 1
Time ﬁ—lﬁ—“ >
\4 Y \4
Result: final operated table Input data up data up data up
updated every triggerinterval to 1 to 2 to 3
-
Output: what part of result to write C%;
to data sink atter every trigger JL
output output — output

Complete output: Write full result table every time Result for data for data for data

Delta output. Write only the rows that changed Hp uptos 1 e
in result from previous batch
Append output: Write only new rows

delta
Qutput o

*Not all output modes are feasible with all queries e

€databricks

API - Dataset/DataFrame

Static, bounded Streaming, unbounded
data data

Single API |

€databricks

Rateh ETL with DataFrames

input = spark.read
.format("json")
.load("source-path")

Read from Json file

result = input

.select("device", "signal") Select some devices
.where("signal > 15")

result.write
.format("parquet")

.save("dest-path") Write to parquet file

€databricks

Streaming ETL with DataFrames

input = spark.read :
format{™Jsan™ Read from Json file stream

.stream("source-path") Replace 1load () with stream()

result = input

.select("device", "signal") Se[ectsome devices
.wh "s] L% 3%
sherel "signa) Code does not change

result.write

.format("parquet™) . :
.startStream("dest-path") Write to Parquet file stream

Replace save () with startStream()

€databricks

Streaming ETL with DataFrames

input = spark.read -
Format("ison™) read._. stream() creates a streaming
.stream("source-path") DatakFrame, doesnot start dany of the

computation

result = input
.select("device", "signal")
.where("signal > 15")

1t.writ . |
T format(*aarquet™) write...startStream() defines where & how
.startStream("dest-path") to outputthe data and starts the
processing

€databricks

Streaming ETL with DataFrames

input = spark.read
.format("json")

.Stream("source-path") Input Y . 4 Y
result = input |
.select("device”, "signal”) WV
.where("signal > 15") Result
append-only table]

result.write New rows
.format("parquet") inreaﬂtl | new rows
.startStream("dest-path") Outp of 2 l, in result
[apper or3

€databricks

Continuous Aggregations

Continuously compute average

input.avg("signal") signal across all devices
input.groupBy("device-type") Continu OUSIy compute average
-avg(“signal®) signal of each type of device

€databricks

19

Continuous Windowed Aggregations

input.groupBy(Continuously compute
$"device-type", _ .
window($"event-time-col”, "10 min")) average ;lgnalo ea(’?h iype
.avg("signal") of device in last 10 minutes
using event-time

Simplifies event-time stream processing (not possible in DStreams)
Works on both, streaming and batch jobs

€databricks 20

Jolning streams with static data

katkaDataset = spark.read | _ |
_kafka("iot-updates") Join streaming data from Katka with

.stream() static data via JDBC to enrich the
streaming data ...

staticDataset = ctxt.read
.jdbc("jdbc://", "iot-device-info")

joinedDataset = ... withouthaving to think that you

kafkaDataset. join(are joining streaming data
staticDataset, "device-type")

€databricks

Output Modes

Defines what is outputted every time there s a trigger
Different output modes make sensefor different queries

input.select("device", "signal")

| .write
Appeﬂd mOde Wlth | .outputMode("append”)
non-aggregation queries .format("parquet")

.startStream("dest-path")

input.agg(count("*"))

Complete mode with gl .. :
_ _ .outputMode("complete")
aggregatlon LICTIES .format("parquet")

.startStream("dest-path")
€databricks

2

Query Management

query = result.write
.format("parquet")
.outputMode("append")
.startStream("dest-path")

guery.stop()
gquery.awaitTermination()

gquery.exception()

guery.sourceStatuses()
gquery.sinkStatus()

€databricks

query: ahandle to therunning streaming
computation for managingit
- Stopit, wait for it to terminate
- (Getstatus
- Geterror, ifterminated

Multiple queries can be active at the same time

~ach query hasunique name for keepingtrack

23

Query Execution

Logically:
Dataset operations on table
(i.e. as easy to understand as batch)

DataFrame

Logical Plan

Physically:

Spark automatically runs the queryin
streaming fashion

(i.e. incrementally and continuously) G

Catalyst optimizer

incremental execution

€databricks

Structured Streaming

High-level streaming API built on Datasets/DataFrames
cventtime, windowing, sessions, sources & sinks

-nd-to-end exactly once semantics

Unifies streaming, interactive and batch queries
Aggregate data in a stream, then serve using JDBC
Add, remove,change queries at runtime

Build and apply ML models

€databricks

What can you do with this thats hard
with other engines’”

True unification
Same code +same super-optimized engine for everything

Flexible APl tightly integrated with the engine
Choose your own tool - Dataset/DataFrame/SQL
Greater debuggability and performance

Benetits of Spark
in-memory computing, elastic scaling, fault-tolerance, straggler mitigation, ...

€databricks

-
-

- Undemn

Batch Execution on Spark SQL

é) i _)
DataFrame/ | Logical
Dataset Plan
\. J \. =
Abstract
representation
of query

€databricks

Batch Execution on Spark SQL

/” N
DataFrame/
Dataset
S
SOLAST Analysis Logical Physigal Code
| Optimization Planning = Generation
= Selected
Unresolved Optimized Phvsical 2 _
DataFrame { ocical Plan Logical Plan \Logical Plan F’Tans T | Physical RDDs
3
Dataset Catalug
€databricks

29

Batch Execution on Spark SQL

i

e

DataFrame/
Dataset

~

/

€databricks

£ L _ l N\ -)

S Planner » Execution Plan

Plan

—— —
T j

e o = I

-7 o l

PP Run super-optimized Spark 1

" jobsto compute results :

Project Tungsten -Phase 1 and 2

Code Optimizations Memory Optimizations

Bytecode generation Compact and fastencoding
JVM intrinsics, vectorization Oftheap memory
Operations on serialized data

30

Continuous Incremental Execution

i

L

) i _)
DataFrame/ Logical

Dataset Plan
» _ J

Planner

Planner knows how to convert
streaming logical plansto a
continuous series of incremental
execution plans, for each processing
the nextchunk of streaming data

€databricks

i)
Incremental

—>

Execution Plan 1
-~

f \
Incremental

Execution Plan 2
_ =

/’ N
Incremental

Execution Plan 3
_ /

4)
Incremental

Execution Plan 4
\ J

31

Continuous Incremental Execution

Planner pollstor
new data from __---"77"

sources 7 Incrementally executes
g new data and writes to sink

' 4

J’

(__..-_

- 3

Incremental | T, >

/
4
Offsets: [19- 105]—> Execution 1

f) HES)
Offsets: [106-197] > i ALE) | Count: 92 >

Execution 2
% >

kafka

€databricks

32

Continuous Aggregations

ot

kafka

€databricks

| Offsets:[19-105] >

| Offsets: [106-179] >

/

Incremental
Execution 1

e =

state:
87

~

-

\.

ncremental
-xecution 2

N

.)

Slate:
173

Maintain running aggregate as in-memory state
nacked by WAL in file system for fault-tolerance

| Running Count: 87>

GF

HUES)

[Count: 87+92=179 >

state data generated and used

across incremental executions
A3

Fault-tolerance

All data and metadata in
the system needsto be
recoverable/ replayable

€databricks

@

e
N

r

Incremental

L state |

_'\

ncremental
-xecution 2

Execution 1 \\\

Fault-tolerance

Faul

t-tolerant Planner

Tracks offsets by writing the

offse
a W

€databricks

L range of each execution to

‘e ahead log (WAL) in HDFS

SQLIFCES

Offsets written '
fault-tolerant WAL

before execution

(e

ncremental

-xecution 1

_'H.\

A

—_————————

state

ncremental

-xecution 2

Sink

Fault-tolerance

Fault-tolerant Planner

“Failed planner fails
current execution

Tracks offsets by writing the r i

offset range of each execution to ncremental
a write ahead log (WAL) in HDFS s

source sink

Failed Execution

-’J
V' state ‘
.)

€databricks

Fault-tolerance

Restarted

Fault-tolerant Planner B

Offsets read back
from WAL

Tracks offsets by writing the

] s ~
offset range of each execution to ncremental
- - “xecution 1 |
a write ahead log (WAL) in HDFS .
source ; SINK

Reads log to recover from

failures, and re-execute exact s
ncremental
range of offsets “xecution 2 I

Same executions
regenerated from offsets

€databricks

Fault-tolerance

Fault-tolerant Sources

Structured streaming sources
are by design replayable (e.g.
Kafka, Kinesis, files) and
generate the exactly same data

gl

P

ven offsets recovered by

anner

€databricks

Replayable
source

Planner

ncremental
Fxecution 1

State

ncremental

-xecution 2

sink

Fault-tolerance

Fault-tolerant State

Intermeaiate "state data" is a

maintained in versioned, key-

value maps in Spark workers,

backed by |

D

5y

Planner makes sure "correct

version" of state used to re-
execute after failure

€databricks

SOurce

Planner

ncremental
Fxecution 1

<sta e

ncremental
-xecution 2

state is fault-tolerant with WAL

Sink

Fault-tolerance

Fault-tolerant Sink Planner

Sink are by design idempotent,

and handles re-executionsto ncremental
. L Execution 1
avoid double committing the xecution
output o
source o
ncremental dempotent
-xecution 2 bydesign

€databricks

€databricks

offset tracking in WAL
+

state management
I

fault-tolerant sources and sinks

end-to-end
exactly-once

guarantees

41

Fast, fault-tolerant, exactly-once

stateful stream processing

without having to reason about

€databricks

S

treaming

Release Plan: Spark 2.0 (June 2016

Basic infrastructure and AP

- Eventti

me, windows, aggregations

- Appenc

and Complete output modes

- Support for a subset of batch queries

Source and sink

- Sources: Files (*Katka coming soon
after 2.0 release)

€databricks

- Sinks: F

ilesand in-memory table

Experimental release to set
the future direction

Not ready for production
out good to experiment

with and provide feedback

Release Plan: Spark 2.1+

Stability and scalability
Supportfor more queries

Multiple aggregations Maka Strietyred

Streaming ready for

More output modes production workloads as
Watermarks and late data SO0N as poggible

Sessionization

Sources and Sinks
Public APls

ML Integrations
€databricks

T1y Apache Spark with Databricks

Stay tuned on our Databricks blogstor more information and
examples on Structured Streaming

Try latestversion of Apache Spark and preview of Spark 2.0
nttp://databricks.com/try

€databricks

45

Structured Streaming

Making Continuous Applications
easier, faster, and smarter

AMA @ Today: Now - 2:00 PM
Databricks Booth Tomorrow: 12:15PM -1:00 PM

Follow me (@tathadas databricks

