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students.select("name").orderBy("age").cache().show()




Ffficient memory use is
critical to good performance
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Jim Gray’s Storage Latency Analogy:
How Far Away is the Data?
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Memory contention poses three
challenges for Apache Spark

How to arbitrate memory between execution and storage?
How to arbitrate memory across tasks running in parallel?

How to arbitrate memory across operators running within
the same task?
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Two usages of memory in Apache Spark

Execution
Memory used for shuffles, joins, sorts and aggregations

Storage

Memory used to cache data that will be reused later
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What if | want the sorted values again?
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Execution memory Storage memory
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Challenge #1

How to arbitrate memory between
execution and storage?
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Easy, static assignment!

Execution Storage
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Easy, static assignment!

Execution Storage

T | S ————————
IIIIIIIIIIIIlMK i
Spill to disk

> databricks



Easy, static assignment!

Execution Storage
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Easy, static assignment!

Execution Storage
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Evict LRU block to disk

gpark 1)
May 2014

>databricks 14



-databricks

Inefficient memory use leads to
bad performance
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Easy, static assignment! .
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Execution Storage
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Execution can only use a fraction of the memory,
even when there is no storage!
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Easy, static assignment! .
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Execution Storage
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Efficient use of memory required user tuning
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Fast forward to 2016...
How could we have done better?
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Unified memory management

Execution Storage
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What happens if there is already storage?
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Unified memory management

Execution Storage
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Unified memory management
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What about the other way round?
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Unified memory management
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Evict LRU block to disk
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Design considerations

Why evict storage, not execution?

Spilled execution data will always be read back from disk,
whereas cached data may not.

What if the application relies on caching?

Allow the user to specify a minimum unevictable amount of
cached data (not a reservation!).

databricks

24



Challenge #2

How to arbitrate memory across
tasks running in parallel?
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Easy, static assignment!

Worker machine has 4 cores

Each task gets 1/4 of the total memory
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Alternative: Dynamic assignment

The share of each task depends on
number of actively running tasks (N)
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Alternative: Dynamic assignment

Now, another task comes along
so the first task will have to spill
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Alternative: Dynamic assignment

Each task is now assigned 1/N of
the memory, where N =2
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Alternative: Dynamic assignment

Each task is now assigned 1/N of
the memory, where N =4
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Alternative: Dynamic assignment

Last remaining task gets all the
memory because N =1
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Static vs dynamic assignment

Both are fair and starvation free
Static assignment is simpler

Dynamic assighnment handles stragglers better
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Challenge #3

How to arbitrate memory across
operators running within the same task?
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SELECT age, avg(height) “

FROM students
GROUP BY age
ORDER BY avg(height) Aggregate

students.groupBy("age")
.avg("height")
.orderBy("avg(height)")
.collect()
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Worker has 6
pages of memory

N N N NN

Aggregate
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Map { // age — heights
20 T154, 174, 175]
2l T 167, 168, 181)]
24 — 'F155, 4166, 188 ]
23 — [160, 168, 178, 183]
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All 6 pages were used
by Aggregate, leaving
no memory for Sort!
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Solution #1:
Reserve a page for
each operator Aggregate
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Solution #1:
Reserve a page for
each operator Aggregate
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Starvation free, but still not fair...
What if there were more operators?

‘databricks



Solution #2:
Cooperative spilling
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Solution #2:
Cooperative spilling
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Solution #2:
Cooperative spilling

Sort forces Aggregate to spill
a page to free memory
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Solution #2:
Cooperative spilling

Sort needs more memory so
it forces Aggregate to spill
another page (and so on)
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Solution #2:
Cooperative spilling

Sort finishes with 3 pages

Aggregate does not have to
spill its remaining pages
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Recap: Three sources of contention

How to arbitrate memory ...

® between execution and storage?
® across tasks running in parallel?
® acrossoperators running within the same task?

Instead of avoid statically reserving memory in advance, deal with
memory contention when it arises by forcing members to spill
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Project Tungsten

Binary in-memory data representation

Cache-aware computation
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Java objects have large overheads

“abco

» Native: 4 bytes with UTF-8 encoding

» Java:
— 12 byte header
— 2 bytes per character (UTF-16 internal representation)
- 20 bytes of additional overhead
— 8 byte hash code
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Java objects based row format

Schema: (Int, String, String)
BoxedInteger(123)

String(“bricks”)

5+ objects, high space overhead, expensive hashCode()

databricks

48



Tungsten row format

(123, “data”, “bricks

Offset to var. length data

| 321

Offset to var. length data

Null tracking bitmap
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Cache-aware computation

E.g. sorting a list of records

rec

key prefix

Naive layout Cache-aware layout
Poor cache locality Good cache locality
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Off-heap memory

Available for execution since Apache Spark 1.6
Available for storage since Apache Spark 2.0

Very important for large heaps

Many potential advantages: memory sharing, zero copy
/O, dynamic allocation
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For more info...

Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal
Spark Performance: What’s Next

Unified Memory Management

Spark ‘
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Databricks Community Edition

Free version of cloud based platform in beta

More than 8,000 users registered

Users created over 61,000 notebooks in
different languages

http://www.databricks.com/try
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