Deep Dive: |
Memory Management in Apache Spqu(

Andrew Or

@andreworl4 W
June 8th, 2016

€ databricks

students.select("name").orderBy("age").cache().show()

Ffficient memory use is
critical to good performance

-databricks

Jim Gray’s Storage Latency Analogy:
How Far Away is the Data?

Andromeda

10 9 Tape /Optical 'E Wi 2,000 Years |A\U%
Robot
Jim Gray
I Turing Award
' B.S. Cal 1966
10° Disk 2 Years pp.p. cal 1969!
1.5 hr
100 Memory .
10 OnBoard Cache his Campus 10 min

2 On Chip Cache j
1 Registers %gMy Head 1 min

(ns)

Memory contention poses three
challenges for Apache Spark

How to arbitrate memory between execution and storage?
How to arbitrate memory across tasks running in parallel?

How to arbitrate memory across operators running within
the same task?

databricks

Two usages of memory in Apache Spark

Execution
Memory used for shuffles, joins, sorts and aggregations

Storage

Memory used to cache data that will be reused later

-databricks

Execution memory
t_‘_\

4°3:5.1,06, 2 1,2, 5. 45526
S R ey Wy

What if | want the sorted values again?

databricks

4.°3,9,1,0, 2 1, 2,3 495 25
e S Ry Wy

4 3.5 1.6, 2 1,2, 3,4,5,0
w-'--n'M

databricks

Execution memory Storage memory
‘_1_\ {_l_\

4,3,5,1,86,2 | | 1,2,3,4,5,6 | Cache |
(e)} —0BB0ER—{ -) —NBBOEE

databricks

Challenge #1

How to arbitrate memory between
execution and storage?

databricks

Easy, static assignment!

Execution Storage

e —
1

Total available memory

Spa"\(A .0
way 2014

databricks 11

Easy, static assignment!

Execution Storage

T | S ————————
IIIIIIIIIIIIlMK i
Spill to disk

> databricks

Easy, static assignment!

Execution Storage

e ——
LN N

> databricks

Easy, static assignment!

Execution Storage

—_—
M

i

Evict LRU block to disk

gpark 1)
May 2014

>databricks 14

-databricks

Inefficient memory use leads to
bad performance

15

Easy, static assignment! .
SDark-,O

Execution Storage

L
HHUUHL.

'

Execution can only use a fraction of the memory,
even when there is no storage!

databricks

16

Easy, static assignment! .
SDark-,O
May2074.

Execution Storage

S —— s
I

Efficient use of memory required user tuning

© databricks

17

Fast forward to 2016...
How could we have done better?

-databricks

® databricks

Execution Storage

e ——
U

19

Unified memory management

Execution Storage

R ——
T e

What happens if there is already storage?

©databricks

20

Unified memory management

Execution Storage

R ——
T TR

:

Evict LRU block to disk

® databricks

21

Unified memory management

Execution Storage

R ——
i

What about the other way round?

= databricks

22

Unified memory management

Execution Storage

—_—
I A I

l

Evict LRU block to disk

® databricks

23

Design considerations

Why evict storage, not execution?

Spilled execution data will always be read back from disk,
whereas cached data may not.

What if the application relies on caching?

Allow the user to specify a minimum unevictable amount of
cached data (not a reservation!).

databricks

24

Challenge #2

How to arbitrate memory across
tasks running in parallel?

‘databricks

Easy, static assignment!

Worker machine has 4 cores

Each task gets 1/4 of the total memory

databricks

Alternative: Dynamic assignment

The share of each task depends on
number of actively running tasks (N)

databricks

Alternative: Dynamic assignment

Now, another task comes along
so the first task will have to spill

databricks

Alternative: Dynamic assignment

Each task is now assigned 1/N of
the memory, where N =2

databricks

Alternative: Dynamic assignment

Each task is now assigned 1/N of
the memory, where N =4

databricks

Alternative: Dynamic assignment

Last remaining task gets all the
memory because N =1

databricks

Static vs dynamic assignment

Both are fair and starvation free
Static assignment is simpler

Dynamic assighnment handles stragglers better

databricks

32

Challenge #3

How to arbitrate memory across
operators running within the same task?

databricks

SELECT age, avg(height) “

FROM students
GROUP BY age
ORDER BY avg(height) Aggregate

students.groupBy("age")
.avg("height")
.orderBy("avg(height)")
.collect()

-databricks

Worker has 6
pages of memory

N N N NN

Aggregate

databricks

® databricks

Map { // age — heights
20 T154, 174, 175]
2l T 167, 168, 181)]
24 — 'F155, 4166, 188]
23 — [160, 168, 178, 183]

Aggregate

All 6 pages were used
by Aggregate, leaving
no memory for Sort!

= databricks

Solution #1:
Reserve a page for
each operator Aggregate

LRRRRP

-databricks

Solution #1:
Reserve a page for
each operator Aggregate

N NN

Starvation free, but still not fair...
What if there were more operators?

‘databricks

Solution #2:
Cooperative spilling

N NN NN

Aggregate

-databricks

Solution #2:
Cooperative spilling

= databricks

Solution #2:
Cooperative spilling

Sort forces Aggregate to spill
a page to free memory

£ databricks

Solution #2:
Cooperative spilling

Sort needs more memory so
it forces Aggregate to spill
another page (and so on)

£ databricks

Solution #2:
Cooperative spilling

Sort finishes with 3 pages

Aggregate does not have to
spill its remaining pages

databricks

Recap: Three sources of contention

How to arbitrate memory ...

® between execution and storage?
® across tasks running in parallel?
® acrossoperators running within the same task?

Instead of avoid statically reserving memory in advance, deal with
memory contention when it arises by forcing members to spill

databricks

45

Project Tungsten

Binary in-memory data representation

Cache-aware computation

databricks

46

Java objects have large overheads

“abco

» Native: 4 bytes with UTF-8 encoding

» Java:
— 12 byte header
— 2 bytes per character (UTF-16 internal representation)
- 20 bytes of additional overhead
— 8 byte hash code

databricks

47

Java objects based row format

Schema: (Int, String, String)
BoxedInteger(123)

String(“bricks”)

5+ objects, high space overhead, expensive hashCode()

databricks

48

Tungsten row format

(123, “data”, “bricks

Offset to var. length data

| 321

Offset to var. length data

Null tracking bitmap

= databricks

Cache-aware computation

E.g. sorting a list of records

rec

key prefix

Naive layout Cache-aware layout
Poor cache locality Good cache locality

databricks

50

Off-heap memory

Available for execution since Apache Spark 1.6
Available for storage since Apache Spark 2.0

Very important for large heaps

Many potential advantages: memory sharing, zero copy
/O, dynamic allocation

databricks

al

For more info...

Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal
Spark Performance: What’s Next

Unified Memory Management

Spark ‘

databricks

Databricks Community Edition

Free version of cloud based platform in beta

More than 8,000 users registered

Users created over 61,000 notebooks in
different languages

http://www.databricks.com/try

$databricks

53

1hank you

andrew@databricks.com
@andreworl4 ¥

d atabriCkS

