DATA+AI

SUMMIT 2022

Delta Lake 2.0

And the ever-growing ecosystem

Tathagata Das Denny Lee

Staff Engineer - Databricks Senior Staff Developer Advocate - Databricks

ORGAMNIZED BY &2 databricks

TODAY...

Delta Lake 2.0.0 |
is in preview | DELTA LAKE

See https://delta.io for APACHE

details on how to try it out \ SprK

DATA+AI

EEEEEEEEEE

What is in Delta 2.0.07?

A lot of new features released in the
last 1 year

This talk will focus on a few awesome
features that are going to have a
large impact on your workloads

For rest of the stuff, see the release
notes and docs!

DATA+AI

SUMMIT 2022

q_?

C)

53 Multi-cluster
Writes

Table Restore

Delta 1.2

x

x

b 4

v

Automatic filtering
on Generated
Columns

OPTIMIZE
(compaction)

Column
Renames

i

Data Skipping
via Column Stats

Delta 2.0

o off

OPTIMIZE Change Data
ZORDER Feed

g5 &

Column Dynamic Partition
Drops Overwrite

v, WS
idempotent

Multi-part
checkpoint writes writes

Data skipping via column stats

Don’‘t read files unnecessarily!

SELECT * FROM events

Column min/max values WHERE year=2020 AND uid=24000

automatically collected when
writing files and stored in Delta Log

_ year: min 2618, max 2819 _
E I FeretperauetUTa T Tin 12000 max 23000 o max skipped as data

Read queries can skip files range outside
. . year: min 2018, max 20280 selected value
completely using min/max values [—ssetpmmee— T 17000 e 17000

j , year: min 2020, max 2020
file3.parquet |;i4. min 23000, max 25000

Much better than Parquet row-
group filtering as you don't need to

even read Parquet footer
DATA+AI

SUMMIT 2022

Optimize ZOrder

Maximize data skipping with data clustering

Data skipping most
effective when files have
very small min/max range

Sorting good for one
column, not multiple

Zorder space filling curve
gives better multi-column
data clustering

DATA+AI

SUMMIT 2022

OPTIMIZE deltaTable ZORDER BY (x, y)

Linear Order (sorting)

'1 10!2 -ﬂﬂa-ﬂj
IRIDD
| ; : g
[D.E:Ij 1,2}:.'2.2 53,2 i

[)
N o
i P

Yy
[="

r,,
(2)

6]

"~
H'ﬁ‘-d

N Y
(8]

e

w

w [
Lo ha)

N By
@) ®
o on
SIS

&
)

o
[~

~
ra 4

() G

&
SIS

Al

o
S

&)

&

IS

~
'.,ﬁ_i’.'ll

iﬂl,ﬁﬁﬁ,ﬂ }T{E.ﬁﬁ?,ﬁj

Lad

=

Y
=)

=

e

on on o
¢ e

oY
e

BDE

o
l.ﬁ:-]

-.J

;
)

Optimize ZOrder

Zorder enables great
data skipping in queries
with filters over multiple
columns

Choose Zorder columns
based on query patterns

DATA+AI

SUMMIT 2022

Re-run zorder if query
patterns change

Evolve data layout based
on your requirements!

SELECT * FROM deltaTable
WHERE x = 2 OR y = 3

9 files scanned in total
21 false positives

Linear Order (sorting)

DISIDIO
SIDIDI:
SIDIBID)
SICIDID
SIDIDIL:
SICIDID)

4,ﬂi iﬁ,ﬂi I.:Ei,ﬂ',I ;’,?’,{};
41 61 61 ()
42 62 €2 (2

63 63 (3] |

IITID
CISITID

D& 60 |

7 files scanned in total -:
13 false positives -:

EHE

&

o
w

b
oy

Yoy SO
(3] S
&

..ﬁ:m

a1
S

e
™

G &
= |... "y

=~
l.,ﬁ_ﬂ'l

D E
D E

|
7 oY
h

Optimize compaction + Zorder: Perf results

SELECT COUNT(*) FROM store_sales

O.5TB store_sales table WHERE ss item sk = 926

from 3TB TPCDS dataset

12300

Baseline: ~40k files about i
~13MB each

500

Compaction: ~1GB files

Median read duration {(ms)
s

Zorder by ss_item_sk:
~1GB clustered files

2500

Compaction Zorder

DATA+AI

SUMMIT 2022

Change Data Feed : Motivation

Read row-level changes generated by update/delete/merge

Change Data Capture IR £y 1 incrementally T\H incrementally ™

(CDC) is acommon pattern Ezgﬂi ? § apply changes 1/ propagate changesbf
where row-level changes
are used to build

Incremental pipelines

-4

end-to-end incremental pipelines

DATA+AI

SUMMIT 2022

Change Data Feed: Motivation

Read row-level changes generated by update/delete/mexge

Applying external row-level
ChanBES iS easy WEth MERGE P B 8 incrementally incrementally [ﬁ

UPDATE b, 2

UPDATE c. 3 apply changes propagate changes ~
~ SQL, Scala, Python APIs g
— Automatic Schema Evolution to
continuously evolve with your data file 1 file 2

i i il | key (val | 1 pow inserted
MERGE copy-on-write - | AMeReE —1> > ;J e s i
rewrites files to change data g i T
— optimized for fast reads nuzhzriﬂ:dzi"

— but which rows changed are not

tracked
DATA+AI

SUMMIT 2022

Change Data Feed: Problem

Read row-level changes generated by update/delete/merge

Reading just the changes g \ a—
rows is inefficient without PDATE c, 3 L_apply changes =~ propagate changes
more information

file 1 file 2

key Iua

Joining between two 2 (1| |read fb>

1 key vay
b |2 b |8
versions can work if there C ﬁJ \ [><]/ : 12

how do identify

are unique keys, but hlghly e which rows got
§ i T CI """ 3 :mmim ' changed or deleted?
Inefficient b |8 |updated _

d |4 | inserted]

expensive join to
identify changes?
DATA+AI

SUMMIT 2022

Change Data Feed: Solution

Read row-level changes generated by update/delete/merge

Store the row_IEVEI Changes Eggﬁz ;’ 2 incrementally [\f incrementally hﬁ \
in a separate set of files uPDATE <, 3 |_SPPLY changes 7 ropagete changet/ %

~ Merge/update/delete will
produce the additional change

files file 1 file 2
' ' . key |wval I key | val
— Reading change data is efficient |2 i ‘ MERGE > : ; |
as they are separate files, no s 13 d |4
filtering needed changed rows
. key wval | change F\\
. vritten to 4 ¢ |3 [|deleted | | Pead changes
— Reading normal data unaffected separate files N b |8 lupdated | | efficiently
. o d |4 |inser‘ty L//
and still efficient

change file

DATA+AI

SUMMIT 2022

Change Data Feed: Batch and Streaming APls

Read row-level changes generated by update/delete/mexge

Build incremental pipelines msewre, 1 ——mre2—N\ e >
. ; ;. MERGE ~ CDF + MERGE
with Structured Streaming e v’ A A

DELTA LAKE DELTA LAKE

~ Read only latest changes or spark.readStream.format("delta")

starting from a version .option("readChangeFeed", "true")
.load("/deltaTable")

Query changes between any spark.read.format("delta")

: : .option("readChangeFeed"”, "true")
table versions or tlmEStampS .option("startingTimestamp", "2021-04-21 05:45:46")

.option("endingTimestamp", "2021-65-21 12:00:00")

~ DataFrame options .load("/deltaTable")

- SQL support in future

DATA+AI

SUMMIT 2022

Change Data Feed: Solution

Read row-level changes generated by update/delete/mexge

Store the row-level changes e, 1 — | | N
UPDATE b, 2 incrementally incrementally N
in a Separate set Of files UPDATE ¢, 3 apply changes / propagate changesl/x

~ Merge/update/delete will
produce the additional change

files file 1 file 2
; . _ key | val .1 key | val
— Reading change data is efficient |2 i ‘ MERG > e 2 —
as they are separate files, no e ' d_|4
filtering needed changed rows |
written to \ k:F v:l |;:i:f:j read changes
— Reading normal data unaffected separate Files b |8 |updated | | efficiently
. . . d 4 |insert
and still efficient 7

change file

DATA+AI

SUMMIT 2022

Column Mapping: Problem

More flexibility in naming, renaming and dropping columns

required Parquet files to store data
_ table data file.parquet
with same column name as table
key val key | val
schema a | 1 a | 1
o8| . |bls
-~ Cannot change column names without T | 4 d | v

rewriting existing files

— Cannot have characters in column
names not supported by Parquet (e.g.,
no spaces)

DATA+AI

SUMMIT 2022

Column Mapping: Solution

More flexibility in naming, renaming and dropping columns

Solution: Delta 1.2 introduced a With Column Mapping
mapping between the logical
: table data file.parquet

column name and the physical

. . key | val uuidl | uuid2
column name in the files a | 1 a | 1

& T & b 8
= Physical names are unique d | a d y 4
- Logical column renames become a \ /
simple change in the mapping logical | physical

col name col name

—~ Logical column names can have —— uuidl
arbitrary characters, physical name val | uuid2
always Parquet-compliant

DATA+AI

SUMMIT 2022

Column Mapping: APlIs

More flexibility in naming, renaming and dropping columns

[Delta 1.2]

Support for renaming columns

: ALTER TABLE table_name
Support for arbitrary column names penaMe coLumn

Use special chars like , ; {}()\n\t= old _col name TO "{new,col,name}’

[Delta 2.0]
ALTER TABLE table_name
Support for dropping columns DROP COLUMN col_name

DATA+AI

SUMMIT 2022

Multi-cluster writes on S3

Full ACID guarantees without maintaining your own infra

Delta Lake ACID guarantees rely table dir/ delta log/

on mutual exclusion guarantees |

from the file system Giritar +- 000.json

riter \+- 901.json
- Must be able to exclusively create a file +- 002.json
in the Delta log only if absent

-~ Works great for HDFS, GCS, ADLS, etc. Writer 2

Allows guarantees without using ANy BIOT the Wi et
o ‘ trying to concurrently write

distributed locks or leases which 002.json must succeed =>

are very hard to get right only then all changes are

serializable

DATA+AI

SUMMIT 2022

Multi-cluster writes on S3: Problem

Full ACID guarantees without maintaining your own infra

Problem: S3 does not provide any
mechanism for mutual exclusion

Spark
cluster 1 \ et et
) 801.json
Delta 1.1 and below did not % 5o
support concurrent writes from Spark / Amazon S3
cluster 2

multiple Spark clusters

both concurrent writes from
different clusters will

succeed and overwrite each
other’s commits => no

DATA+AI serializability

SUMMIT 2022

Multi-cluster writes on S3: Solution

Full ACID guarantees without maintaining your own 1infra

Solution: write with mutual
exclusion to DynamoDB

: ; Spark
I. Only one writer commits P
cluster 1 000 @00.json
changes to DynamoDB 001 001.json
002
Spal'k / DynamoDB Amazon S3
cluster 2

only one writer succeeds in
committing to DynamoDB
ensuring serializable changes

DATA+AI

SUMMIT 2022

Multi-cluster writes on S3

Full ACID guarantees without maintaining your own infra

Solution: write with mutual
exclusion to DynamoDB

; ; Spark
I. Only one writer commits P _
cluster 1 n 000.json
changes to DynamoDB 001 901.json
02 002 .json

2. Committed writes synced from Spark

DynamoDB

Amazon S3

DynamoDB to S3 cluster 2 after sync, S3 has consistent log

structure for all readers

Robust solution: no distributed locks or
leases, no self-managed service or infra

DATA+AI

SUMMIT 2022

Multi-cluster writes on S3

Full ACID guarantees without maintaining your own infra

Enable multi-cluster writes in Delta 1.2 and above by setting Spark configs
— Log store type:

spark.delta.logStore.s3.impl = io.delta.storage.S3DynamoDBLogStore
~ DynamoDB table details:

spark.io.delta.storage.S3DynamoDBLogStore.ddb.tableName = <table name>

spark.io.delta.storage.S3DynamoDBLogStore.ddb.region = <AWS region>

All writers writing to the same Delta table must be configured with the same
DynamoDB table for correctness

DATA+AI

SUMMIT 2022

Many more features

See docs and release notes for details

Restore (aka rollback) to RESTORE TABLE deltaTable
. : TO TIMESTAMP AS OF '2019-02-14 12:00:00'
previous table versions

. g : .. WHERE eventTime < '2021-05-24 09:00:00.000"
Automatic filter generation on R
generate extra filter if table is partitioned by

generated partition Co]umns “eventDate” generated from "eventTime’
. WHERE eventTime < '2021-05-24 09:00:00.000"'

Better filtering, faster queries
AND eventDate < '2021-05-24'

Write impotently to a table dataframe.write.format("delta”)
_ _ .option("txnAppId", "myApp")
No duplicates on retries .option("txnVersion”, 10)

DATA+AI .save("/deltaTable")

SUMMIT 2022

Flink: Delta Sink

Available since Delta Connectors 0.4

Writes from DataStream<RowData>

In batch or streaming modes DeltaSink<RowData> deltaSink = DeltaSink

° .forRowData(path, hadoopConf, rowType)
Supports readmg by table path on .withPartitionColumns(...)

ADLS, GCS and S3 (single cluster) .build();

Support for S3 multi-cluster using
DynamoDB coming in Connectors 0.5

datastream.sinkTo(deltaSink);

Gives exactly once guarantees with
replayable sources

DATA+AI

SUMMIT 2022

Flink: Delta Source

Coming with Delta Connectors 0.5

Reads as DataStream<RowData> DeltaSource
in bounded or continuous mode . forBoundedRowData(path, hadoopConf)

.build();
For bounded, supports querying old
table versions (aka Time Travel) // Time travel
_) DeltaSource
For continuous, supports reading . forBoundedRowData(path, hadoopConf)
full table + changes, OR only .timestampAsOf("2022-02-24 04:55:00")
changes since a version .build();
Supports all file systems // Streaming
DeltaSource
Support for catalog tables + SQL + .forContinuousRowData(path, hadoopConf)
.build();

Table APl in progress

DATA+AI

SUMMIT 2022

Trino / Presto: Delta connector
Avalilable since Presto 0.269 and Trino 0.375

[Presto and Trino] Supports reads on tables
defined in Hive Metastore

Trino] Supports data skipping with column stats

Trino] Supports writes

[Trino] Support Optimize compaction

DATA+AI

SUMMIT 2022

