€ databricks

Everyday I’m Shufflin
Tips for Writing Better Spark Jobs

Vida Ha & Holden Karau - Strata SJ 2015




Who are we?

Holden Karau

e Current: Software Engineer at Databricks.

e Co-authorof “Learning Spark”.

e Past: Worked on search at Foursquare & Engineer @ Google.

Vida Ha

e Current: Solutions Engineer at Databricks.
e Past: Worked on scaling & distributed systems as a Software
Engineer at Square and Google.

€databricks




Our assumptions

e You know what Apache Spark is.

e You have (or will) use it.

e You wantto understand Spark’s internals, not
just it’s API’s, to write awesomer™ Spark jobs.

*awesomer = more efficient, well-tested,

reusable, less error-prone, etc.

€databricks




Key Takeaways

e Understanding the Shuffle in Spark
o Common cause of inefficiency.
e Understanding when code runs on the driver
vs. the workers.
o Common cause of errors.
e How to factor your code:
o Forreuse between batch & streaming.
o For easy testing.

€databricks




Good Old Word Count in Spark

sparkContext.textFile(“hdfs://...””)
.flatMap(lambda line: line.split())
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a + b)

wordcount(wordcount) <100

€databricks




What about GroupbyKey instead?

sparkContext.textFile(“hdfs://...”7)
.flatMap(lambda line: line.split())
.map(lambda word: (word, 1))

.groupByKey ()

.map(lambda (w, counts): (w, sum(counts)))

Will we still get the right answer?

$databricks




ReduceByKey vs. GroupByKey

Answer: Both will give you the same answer.
But reduceByKey is more efficient.

In fact, groupByKey can cause of out of disk
problemes.

Examine the Sh uffle to understand.

@databricks




What’s Happening in Word Count

Same | sparkContext.textFile(“hdfs://...”")

Worker .flatMap(lambda line: line.split())

Node .map(lambda word: (word, 1))

Triggers [ reduceByKey or groupByKey ]
a shuffle
of data

Shuffle occurs to transfer all data with the same key

to the same worker node.

€databricks




ReduceByKey: Shuffle Step

(a, 1)
(a, 1) (a, 1)

(a, 1) (a, 1) (a, 1) (a, 2) (a, 1) (a, 3)
(b,1) — > (b, 1) (b,1) — (b, 2) (b, 1) = (b, 3)
(b, 1) (b, 1)

(b, 1)

Shuffle \’-‘-\(

(a, 1) (b, 1)
(a, 2) — (a, 6) (b, 2) = (b, 6)
(a, 3) (b, 3)

With ReduceByKey, data is combined so each partition outputs at

most one value for each key to send over the network.

€databricks



GroupByKey: Shuffle Step

(a, 1)
(a, 1) (a, 1)

(a, 1) (a, 1) (a, 1)
(b, 1) (b, 1) (b, 1)
(b, 1) (b, 1)

(b, 1)

Shuffle \’.‘y

=t
o), (b,1)

(a, 1) (a, 6) (b, 1) (b, 6)
(a, 1) (b, 1)

(a, 1) (b, 1)

With GroupByKey, all the data is wastefully sent over the network

and collected on the reduce workers.

€databricks



Prefer ReduceByKey over GroupByKey

Caveat: Not all problems that can be solved by
groupByKey can be calculated with reduceByKey.

ReduceByKey requires combining all your values
iInto another value with the exact same type.

reduceByKey, aggregateByKey, foldByKey, and

combineByKey, preferred over groupByKey

€databricks




Join a Large Table with a Small Table

join rdd = sglContext.sql(“select *
FROM people 1n the us
JOIN states
ON people in the us.state = states.name”)

print join rdd.toDebugString()

e ShuffledHashloin?’
e BroadcastHashJoiln?’

€databricks




ShuffledHashJoin

US RDD

Small
State
RDD

US RDD USRDD
Partition 2 Partition n>> 50

Partition 1

All the data {
for the US will S
be shuffled » \ Problems:
into only 50 e Uneven
keys for each “AL the h .
of the states. e tias el oy S ardmg
All** the = i itad
Data for CA e Limite
o parallelism w/
50 output
partitions

Even a larger Spark cluster will not solve these problems!

€databricks




BroadcastHashJoin

Solution: Broadcast the Small RDD to all worker nodes.

Small

State
RDD

Broadcast {

US RDD
Partition 1

Small
State
RDD

US RDD

HR By Partition n>> 50

Partition 2

Small
State
RDD

Small
State
RDD

Parallelism of the large RDD is maintained (n output
partitions), and shuffle is not even needed.

€databricks




How to Configure BroadcastHashJoin

e Seethe Spark SQL programming guide for your
Spark version for how to configure.

e ForSpark1l.2:
o Set spark.sqgl.autoBroadcastJoinThreshold.
o sqlContext.sql(“ANALYZE TABLE state_info

COMPUTE STATISTICS noscan”)

e Use .toDebugString() or EXPLAIN to double

check.

€databricks




Join a Medium Table with a Huge Table

join rdd = sglContext.sqgl(“select *
FROM people 1n california
LEFT JOIN all the people 1n the world
ON people 1n california.id =
all the people in the world.id”)

Final output keys = keys people_in_california,
so this don’t need a huge Spark cluster, right?

€databricks




Left Join - Shuffle Step

All CA All Whole World
RDD RDD

Shuffles everything
All the Data from .
Both Tables before dropping keys

Not a Problem:
e Even Sharding
Final e Good Parallelism

Joined
Output

The Size of the Spark Cluster to run this job is limited by the Large

table rather than the Medium Sized Table.

$databricks




What’s a Better Solution?

Filter the World World RDD for only entries that match the CAID

All CA

Whole World
RDD

RDD

Filter Transform {

Partial

Benefits: World
e Less Data shuffled 0
over the network ‘ } Shuffle
and less shuffle
space needed. o
e More transforms, Sl
but still faster.

€databricks



What’s the Tipping Point for Huge?

e Can’ttellyou.
e There aren’t always strict rules for optimizing.

e I|fyou were only considering two small columns
from the World RDD in Parquet format, the
filtering step may not be worth it.

You should understand your data and it’s unique properties in

order to best optimize your Spark Job.

€databricks




In Practice: Detecting Shuffle Problems

Result Getting
Serialization Reault

Exacutor ID / Host Time Tima

0/ ip-10-0-187-180.us- Oms Oms
west-2 compute internal
0/ip-10-0-187-189.us- A Oms 0 ma
wos!-2 compute. ntemal

0/ ip-10-0-187-189 us- ' Oms 0Oms
wast -2 compute. ntemal
0/ip-10-0-187-189.us- ! 0Oms
wost-2 . compute, nternal

0/ip-10-0-187-188.us- : Oms
wesl-2 compule intemal

Check the Spark Ul
pages for task

0/ ip-10-0-187-188 us- L Oms
west-2 compute. intemal

SUCCESS 0/ip-10-0-187-180 us- . 0ms
west-2. compute. internal

SUCCESS 0/ip-10-0-187-189.us- A Oms
weast-2 compute.internal

RUNNING : 0/ ip-10-0-187-188.us- 0Oms
west-2 . compute. mtemal

RUNNING 0/ ip-10-0-187-180.us- Oms
west-2 compute. intemal

RUNNING 0/ ip-10-0-187-189 us- 0 ms
west-2 compute. intemal

RUNNING 0 /ip-10-0-187-189.us- Oms
west-2 compute.intemal

level detail about
your Spark job.

Things to Look for:

e Tasks that take much longer to run than others.

e Speculative tasks that are launching.

e Shardsthat have a lot more input or shuffle output than others.

@databricks




Execution on the Driver vs. Workers

The main program are executed on the Spark Driver.

Transformations are executed on the Spark Workers.

output = sparkContext
.textFile(“hdfs://...”)
.flatMap(lambda line: line.split())
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a + b)
.collect()

print output

Actions may transfer data from the Workers to the Driver.

@databricks




What happens when calling collect()

collect() sends all the partitions to the single driver

Worker Worker Worker Worker
Partition 1 Partition 2 Partition 3 Partition n

g
The Driver »~ OOM Error!

collect() on a large RDD can trigger a OOM error

€databricks



RiceRdd.collect()
myLargeRWQa. countByKey()

myLargeRdd.cSntByValue()
myLargeRdd.collc

Be cautious with all
actions that may return
unbounded output.

Don’t call collect() on a large RDD

Option 1: Choose actions
that return a bounded
output per partition, such
as count() or take(N) .

Option 2: Choose actions
that outputs directly from
the workers such as
saveAsTextFile().

€databricks




Commonly Serialization Errors

Map to/from a
serializable form
Hadoop Writables

Capturing a full Non- Copy the required
Serializable object serializable parts locall

Network Connections Create the connection
on the worker

$databricks




Serialization Error

myNonSerializable = ...
output = sparkContext

.textFile(“hdfs://...”)
.map(lambda 1: myNonSerializable.value + 1)

.take(n)
print output

Spark will try to send myNonSerializable from the Driver to the

Worker node by serializing it, and error.

€databricks




RDDs within RDDs - not even once

Only the driver can perform operations on RDDs

map+tget:
rdd.map{(key, value) => otherRdd.get(key)...}
can normally be replaced with a join:
rdd.join(otherRdd) .map{}
map+map:
rdd.map{e => otherRdd.map{ ... }}
Is normally an attempt at a cartesian:
rdd.cartesian(otherRdd) .map()

€databricks




Writing a Large RDD to a Database

Option 1: DIY Option 2: DBOutputFormat
Initialize the Database Database must speak
Connection on the Worker JDBC
rather than the Driver Extend DBWritable and

Network sockets are save with
non-serializable saveAsHadoopDataset

Use foreachPartition
Re-use the connection
between elements

€databricks




DIY: Large RDD to a Database

Cat photo from https://www.flickr.com/photos/rudiriet/140901529/

€databricks




DIY: Large RDD to a Database

data.forEachPartition{records => {
// Create the connection on the executor
val connection = new HappyDatabase(...)
records.foreach{record =>
connection.//1implementation specific

}
}
}

€databricks




DBOutputFormat

case class CatRec(name: String, age: Int) extends DBWritable

{

override def write(s: PreparedStatement ) {
s.setString(1l, name); s.setInt(2, age)

b}
val tableName = "table’

val fields = Array('“name”, "age")
val job = new JobConf()
DBConfiguration.configureDB(job, "com.mysqgl.jdbc.Driver",

II..II)
DBOutputFormat.setOutput(job, tableName, fields: *)

records.saveAsHadoopDataset(job)

€databricks




Reuse Code on Batch & Streaming

Streaming Batch
val 1ps = logs.transform def extractIp(
(extractIp) logs: RDD[String]) = {
logs.map( .split(“ “)(9))
}

val ips = extractIp(logs)

Use transform on a DStream to reuse your RDD to RDD functions

from your batch Spark jobs.

$databricks




Streaming

tweets.foreachRDD{(tweetRDD, time) =>

writeOutput(tweetRDD)
}

Use foreachRDD on a DStream

to reuse your RDD output

functions from your batch
Spark jobs.

Reuse Code on Batch & Streaming

Batch

def writeOutput(ft..) = {
val preped = ft.map(prep)
preped.savetoEs(esResource)

}

val ¥t = tIds.mapPartition{
tweetP =>
val twttr = TwitterFactory.
getSingleton()
tweetP.map{ t =>
twttr.showStatus(t.tolLong)

1}
writeOutput(ft)

€databricks




Testing Spark Programs

Picture of a cat

Unit-tests of functions

Testing with RDDs

Special Considerations for Streaming

€databricks




e ST S
MENU /ENGINE SOURCE AUTO/SET

e i T T i—

e

_-J

-




Simplest - Unit Test Functions

instead of:

val splitlLines = inFile.map(line => {
val reader = new CSVReader(new StringReader(line))
reader.readNext ()

1)

write:

def parselLine(line: String): Array|[Double] = {
val reader = new CSVReader(new StringReader(line))
reader.readNext().map( .toDouble)

}

then we can:

test("should parse a csv line with numbers") {

MoreTestableLoadCsvExample.parselLine("1,2") should equal

(Array|[Double] (1.0, 2.0))
}

€databricks




Testing with RDDs

trait SSC extends BeforeAndAfterAll { self: Suite =>

@transient private var sc: SparkContext =

det sc: SparkContext = _sc

var conf = new SparkConf(false)

override def beforeAll() {
~sc = new SparkContext("local[4]", "test", conf)

super.beforeAll()
}

override def afterAll() {
LocalSparkContext.stop( sc)
~sc = null
super.afterAll()

} €databricks

¥



Testing with RDDs

Or just include http://spark-packages.
org/package/holdenk/spark-testing-base

1 holdenk/spark-test: = § 1
&~ =5 @ [ spark-packages.org/package/holdenk/spark-testing-base 3

SparK Fackages

holdenk/spark-testing-base omepage)

Base classes to use when writing tests with Spark
{@holdenk / (R0}

The spark-testing-base package makes it easy 10 test your Spark code

Your rating

e ==l

TEQS (Mo taqs yet, be the first 10 add ane. )

Releases
Version: 0.0.1 ( 8dbdcS | zip | jar ) / Date: 02/07/15 / License: Apache-2.0

Spark compatibality:

Register a release
The following information are required to register a release

« The release version. Using Semantic Versioning is recommended.
« The associated git commit SHA-1 hash of the release. We use commit hash instead of tag for content immutability.
» The license of the release.

Optionally, you can provide a Maven coordinate if an artifact is published on Maven Central for this release, Its version number must match the release version, so we only
need groupld and artifactld. The artifactid must contain the package name. For example, the maven coordinate for "spark-avro® is "com.databricks:spark-avro_2.10".

Link to spark-testing-base from spark-packages.
€databricks




Testing with RDDs continued

test("should parse a csv line with numbers") {
val 1nput = sc.parallelize(List("1,2"))
val result = input.map(parseCsvlLine)
result.collect() should equal (Array[Double](1.0, 2.0))

€databricks




Testing with DStreams

Some challenges:
e Creating a test DStream
e collecting the data to compare against locally
o use foreachRDD & a var
e stopping the streaming context after the input stream
1s done
o use a manual clock
m (private class)
o walt for a timeout
m slow

€databricks




Testing with DStreams - fun!

class SampleStreamingTest extends StreamingSuiteBase {
test("really simple transformation") {
val 1input = List(List("h1i"), List("hi holden"),
List("bye"))
val expect = List(List("h1i"),
List("h1"”, "holden"),
List("bye"))
testOperation[String, String](input, tokenize
expect, useSet = true)

N

€databricks




€ databricks

THE END







4o | AN
Cat picture from http://galato901.deviantart.com/art/Cat-on-WSnGE (o ""L"‘I"'}c’




The DAG - iIs it magic?

€databricks

Dog photo from: Pets Adviser by htip://petsadviser.com




