Optimizing
Apache Spark SQL Joins

Vida Ha '
Solutions Architect databricks

About Me

2005 Mobile Web & Voice SearGOf'gIe

€databricks

About Me

2005 Mobile Web & Voice SearGO gle

2012 Reporting & Analytics B

€databricks

About Me

2005 Mobile Web & Voice SearGO b gle

2012 Reporting & Analytics B

2014 Solutions Architect ‘databriCkS”‘"

$databricks ’

Evolution of Spark...

2014: 2017:
e Spark 1.x » Spark 2.x
« RDD based API’s. « Dataframes & Datasets

e Everyday I’m Shufflin’ « Adv SQL Catalyst
* Optimizing Joins

€databricks >

Spark SQL Joins

S Bl o

FROM TABLE A

JOIN TABLE B

ON A.KEY1l = B.KEYZ2

Topics Covered Today

Basic Joins: Special Cases:
* Shuffle Hash Join Theta Join

* Troubleshooting * One to Many Join
* Broadcast Hash Join
e Cartesian Join

€databricks

Shuffle Hash Join

A Shuffle Hash Join is the most basic type of
join, and goes back to Map Reduce
Fundamentals.

» Map through two different data frames/tables.

» Use the fields in the join condition as the output
Key.

» Shuffle both datasets by the output key.

* In the reduce phase, join the two datasets now
any rows of both tables with the same keys are on
edatabricks t(N€ Same machine and are sorted.

Shuffle Hash Join

+|'

MAP § -:I " Table 2

SHUFFLE

REDUCE Output Output Output

€databricks

Shuffle Hash Join Performance

Works best when the DF's:
 Distribute evenly with the key you are joining on.
» Have an adequate number of keys for parallelism.

join rdd = sqlContext.sqgl(“select *
FROM people in the us
JOIN states
ON people in the us.state = states.name”)

$databricks

Uneven Shardlng & lelted Parallellsm

us DI
Partition 1

us o — P US DF

Partltlon 2 Partition N Small::l:State

All the data— Problems:

Z‘;i'l'ltgz Uus L e Uneven
shuffled S.ha.rdlng

into only 50 e Limited

keys for parallelism w/
each of the 50 output
states. partitions

A larger Spark Cluster will not solve these
problems! gdatabricks

Uneven Shardlng & Limited Parallellsm

)<
Partltlon 2

e — H

Partltlon 1

US DF -
Partition N Small State
DF

All the data— Problems:

forthe US |

ool o e Uneven
shuffled Slha_rd'ng

into only 50 o Limited

keys for parallelism w/
each of the 50 Output
states. partitions

Broadcast Hash Join can address this problem if
one DF is small enough to fit in memory.

$databricks

More Performance Considerations

join rdd = sglContext.sgl(“select *
FROM people in california
LEFT JOIN all the people _in the_world
ON people 1n california.id =
all the people in the world.id”)

Final output keys = # of people in CA, so don'’t
need a huge Spark cluster, right?

$databricks

Left Join - Shuffle Step

All CA DF All World

S —

A e c—. : r&fd f

Shuffles everything
before dropping keys

R e Not a Problem:

e Even Sharding
Final e Good Parallelism

Joined
Output

The Size of the Spark Cluster to run this job is limited
by the Large table rather than the Medium Sized Table.

$databricks

A Better Solution

Filter the World DF for only entries that match the CA ID

All World
DF

All CA DF

" Partial

World DF

Benefits:

e Less Data shuffled
over the network
and less shuffle

space needed.
e More transforms,

but still faster.

— Shuffle

$databricks

What's the Tipping Point for Huge?

e Can't tell you.

e [here aren't always strict rules for optimizing.

e If you were only considering two small
columns from the World RDD in Parquet
format, the filtering step may not be worth it.

You should understand your data and it’s unique properties in
order to best optimize your Spark Job.

$databricks

In Practice: Detecting Shuffle Problems

Yo = Check the Spark

—— = Ul pages for task

——— (DR level detail about
S—— i N your Spark job.

Things to Look for:
e [asks that take much longer to run than others.
e Speculative tasks that are launching.
e Shards that have a lot more input or shuffle output.

$databricks

Broadcast Hash Join

Optimization: When one of the DF’s is small

enough to fit iIn memory on a single machine.

Broadcast %\

Large DF
Partition 1

Large DF
Partition N

Partition 2

Parallelism of the large DF is maintained (n output
partitions), and shuffle is not even needed.

€databricks

18

Broadcast Hash Join

» Often optimal over Shuffle Hash Join.

» Use “explain” to determine if the Spark SQL
catalyst hash chosen Broadcast Hash Join.

» Should be automatic for many Spark SQL tables,
may need to provide hints for other types.

€databricks

19

Cartesian Join

* A cartesian join can easily explode the number of output
rows.

100,000 X 100,000 = 10 Billion
 Alternative to a full blown cartesian join:
» Create an RDD of UID by UID.
» Force a Broadcast of the rows of the table .

» Call a UDF given the UID by UID to look up the table
rows and perform your calculation.

* [Ime your calculation on a sample set to size your cluster.

€databricks

20

One To Many Join

* A single row on one table can map to many rows on the
2nd table.

« Can explode the number of output rows.

* Not a problem if you use parquet - the size of the output
files is not that much since the duplicate data encodes
well.

$databricks

21

Theta Join

join rdd = sqglContext.sql(“select *
FROM tableA
JOIN tableB
ON (keyA < keyB + 10)”)
« Spark SQL consider each keyA against each keyB in
the example above and loop to see if the theta

condition IS met.

» Better Solution - create buckets for keyA and KeyB
can be matched on.

€databricks

22

Spark
databricks

Questions?

Spark
databricks

