Spoﬁg

DEVOPS ADVANCED CLASS

March 2015: Spark Summit East 2015

09 http://slideshare.net/databricks

in. www.linkedin.com/in/blueplastic

® databricks

ccl§ XSHO,



£ databricks

making big data simple

Founded in late' 2013

by the creators of Apache Spark
Original team from UC Berkeley AMPLab
Raised $47 Million in 2 rounds

~50 employees

We're h”-”-]gl (http://databricks.workable.com)
Level 2/3 support partnerships with

« Clouderao

« Hortonworks

Databricks Cloud:

* MODR “A unified platform for building Big Data pipelines
— from ETL to Exploration and Dashboards, to

« DataStax Advanced Analytics and Data Products.”




The Databricks tfeam contributed more than 75% of the code added to Spark in the past year

® databricks



AGENDA

Before Lunch After Lunch
« History of Spark « Memory and Persistence
RDD fundamentals « Jobs -> Stages -> Tasks
Spark Runtime Architecture  Broadcast Variables and
Integration with Resource Managers Accumulators
(Standalone, YARN)
« PySpark
« GUIs
« DevOps 102 Uk
. Lab: DevOps 101 Uk
« Shuffle

« Spark Streaming

® databricks



Some slides will be skipped

Please keep Q&A low during class

(Spm — 5:30pm for Q&A with instructor)

2 anonymous surveys: Pre and Post class
Lunch: noon — 1pm

2 breaks (before lunch and after lunch)



Machines

People

Algorithms a m p
!

f\\/*ﬂ_“’ University of California

« AMPLab project was launched in Jan 2011, é year planned duration
« Personnel: ~65 students, postdocs, faculty & staff

» Funding from Government/Industry partnership, NSF Award, Darpa, DOE,
20+ companies

« Created BDAS, Mesos, SNAP. Upcoming projects: Succinct & Velox.

“Unknown to most of the world, the University of California, Berkeley's AMPLab
has already left an indelible mark on the world of information technology, and
even the web. But we haven't yet experienced the full impact of the
group]...] Not even close”

- Derrick Harris, GigaOm, Aug 2014




'\II‘

Scheduling Monitoring Distributing




Distributions:

CDH
HDP
MapR
DSE

Tachyon

‘ mongoDB

R P R C HE

Hadoop Input Format




' Rick Richardson Follow

Just realized Berkeley AMPLab Is the Xerox
PARC of this century. #sparksummit

B 'SR YaAss




(2007 — 20152)

Giraph
Pregel (2014 - 2)

Tez

(2004 — 2013)
Drill

Storm Mahout — SpQ '

S4

Dremel

W iedogn, —

Impala

GraphlLab

Specialized Systems

(iterative, interactive, ML, streaming, graph, SQL, etc)

General Batch Processing General Unified Engine



Lines of Code

In a Nutshell, Apache Spark...

. has had 17,297 commits made by 448 contributors
representing 332,309 lines of code

- is mostly written in Scala
with a well-commented source code
Code M Comments
- has a codebase with a long source history
maintained by a very large development team
with stable Y-O-Y commits

Contributors per Month

.. took an estimated 88 years of effort (COCOMO model)
starting with its first commit in $=re=—2e36- Aug 2009
ending with its most recent commit 2 days ago

Languages

/6% [ Python
13

7% B 9 Other - & s

Source: openhub.net



DISTRIBUTORS

© databricks

i cloudera
Pivotal orACLE

:' '.
DATASTAX_®

data

W qUAVUS

APPLICATIONS

d¢+ableauv MicreStrafegy Qlik @E};
' @ pentaho: talen

| technicolor
Alpine @at lOOker W =

Z FAIM FNADATAD HyiYOTTA

YOOMDATA | | platfora “APERWVI

Leors ZALONI =5 Typesate



ﬂkll'ﬁgnap—r ﬂ'ggpdﬁgﬂge—» ;‘ﬁ"gﬁgaup—» ﬂ'ggpggﬁge—p ﬂz‘@gfaap

__________________________________________________________

‘”ﬁl[l}%:laap—»




0.1 Gb/s

1 Gb/s or

Nodes in
LEgmny S another

rack
Network

1 Gb/S or Nodes In
125 MB/s same rack

100 MB/s 600 MB/s

3-12 MS random access 0.1 ms random access

$0.05 per GB $0.45 per GB




Spark: Cluster Computing with Working Sets

Matei Zahana, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, lon Stoica

University of California, Berkeley

Abstract

MapReduce and s vanants have been highly successiul
in implementing large-scale data-intensive apphcalions
on commodity clusters. However, most of these systems
ar¢ built around an acvchic data flow model that 15 not
suitable for other popular applicanons. This paper fo-
cuses on one such class of apphcations: those that reuse
a working set of data across multiple parallel operations.
Thas includes many iterative machine leaming algonthms,
as well as interactive data analysis tools. We propose a
new [ramework called Spark that supporis these applica-
tions while relaimng the scalabairy and fault wolerance of
MapReduce. To achieve these goals, Spark introduces an
abstraction called resilient distnbuted datasets (RDDs).
An RDD 15 a read-only collection of objects partiioned
across a sel of machines that can be rebuilt if a partition
15 lost. Spark can outperform Hadoop by 10x in iterative
machine learning jobs, and can be used to interactively
query a 39 UGB dataset with sub-second response ime.

1 Introduction

A new model of cluster computing has become widely
popular, in which data-paralle]l computations are executed
on clusters of unreliable machnes by systems that aulo-
matcally provide locality-aware scheduling. fault toler-
ance, and load balancing. MapReduce [1 1] pioneered this
model, while systems like Dryad [17] and Map-Reduce-
Merge [24] generalhized the types of data flows supported.
These systems achieve thewr scalabdity and fault tolerance
by providing a programmung model where the user creates
H T }.1_'|l-..' data flow gr .1p|ll1 Lo pass mpul it [il.:'uull:h i set ol
operators. This allows the underlying sysiem o manage
scheduling and to react 1o faulis without usér inlervention
Whale thas data fQow programmuang model 15 useful for a
large class of applications, there are applications that can-
nol be expressed efficiently as acyclic data flows. In this
paper. we focus on one such class of applicabions: those
that reuse a working sef of data across muluple parallel
operabons.  This includes wo use cases where we have
SEEn ”.nl.ld.mp USETs report that 5].:1*H|.'|Ju-..1: 15 deficient:

e lterative jobs: Many common machine learmng algo-
rithms apply a function repeatadly to the same dataset
o optimize a parameter (e.g., through gradient de-
scent). Wihle each ieration can be expressed as a

MapReduce/Dryad job, each job must reload the data
from disk. incurnng a sigmhcant performance penalty.

Interactive analytics: Hadoop 15 often used to run
ad-hoc exploratory quenes on large datasets, through
SOQL interfaces such as Pig [21] and Hive [1]. Ideally,
a user would be able 10 load a dataset of interest inlo
memory across a number of machines and query il re-
peatedly. However, with Hadoop. each query incurs
sigmificant latency (lens of seconds) because il runs as
a separate MapReduce job and reads data from disk

This papcr prescnis a4 new cluster compunng Jrame-
work called Spark, which supports applications with
warking sets while providing sinular scalability and fault
tolerance properties o MapReduce.

The main abstraction in Spark is that of a resiliens dis-
tributed dataser (RDD). which represents a read-only col-
lecthion of objects p,u:r[ﬂ:um.'ul aeross @ sel of machines that
can be rebuilt if a partition is lost. Users can explicatly
cache an RDD in memory across machines and reuse it
i multuple MapReduce-like parallel operations. RDDs
achieve faull wlerance through a notion of lineage: il a
partiion of an RDD s lost, the RDD has enough infor-
mation about how it was denved from other RDDs to be
able 1o rebuild just that pamion. Although RDDs are
nol a peneral shared memory abstraction, they represent
a sweel-spol between expressivity on the one hand and
scalability and rehability on the other hand. and we have
found them well-smited for a vanety of apphications.

Spark 15 implemented in Scala [5], a statically typed
}u:,:h-iu."..-:[ programmung language for the Java VM. and
exposés a functional programming nlerface similar 1o
DryadLINQ [25]. In addition, Spark can be used inter-
actively from a modified version of the Scala interpreter.
which allows the user to define RDDs. functions, van-
ables and classes and use them in parallel operations on a
cluster. We believe that Spark 1s the first system to allow
an efficient, general-purpose programmang language 1o be
used interactively o process large datasets on a clusier

Although our implementation of Spark is sull a proto-
type. carly expenence with the system 18 éncouraging. we
show that Spark can outperform Hadoop by 10x in itera-
tve machine learming workloads and can be used interac-
bvely to scan a 39 GB dataset with sub-second latency

This paper 15 orgamzed as follows. Secton 2 descnibes

'he main abstraction in Spark is that of a res
fributed dataset (RDD), which represents a read-only

ient dis-

collection of objects partitioned across a set of
machines that can be rebuilt if a partition is lost.

Users can explicitly cache an RDD in
machines and reuse it in multiple Mo
parallel operatfions.

RDDs achieve fault tolerance throug

mMemory ACross
oReduce-like

N A notion of

ineage: If a partition of an RDD is los
enough information about how |

. tThe RDD has

t was derived from

other RDDs to be able to rebuild just that partition.”

June 2010

hittp://www.cs.berkeley.edu/~matei/papers/2010/hotcloud_spark.pdf



Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, lon Stoica

University of California, Berkela

Abstract

We present Resihient Dhistnbuted Datasets (RDDs), a dis-
tributed memaory abstraction that lets Programmerns per-
lorm ilt-l“k.'lll“l'_'n- |..'1|l|:||"l..|[-|.'l|||-|f:|"'- ¥ -In.ll‘_..'l..' clusters in a
fault-tolerant manner. KDDs are motivated by two [ypes
of apphcations that current computing frameworks han-
dle imefhciently: nerative algonthms and inleractive data
mining lools. In both cases, keeping data in memory
can improve performance by an order of magmiude
To achieve fault tolerance efhaently, RDDs provide a
restncted form of shared memory. based on coarse-
grained transformations rather than fine-gramed updates
to shared state. However, we show that RDDs are expres-
sive enough to capture a wide class of computations, in-
cluding recent specialized programmung models lor ner-
alive jobs, such as Pregel. and new applications that these
models do not capture. We have implemented RDIDs in a
system called Spark, which we evaluate through a vanety

of user applicatons and benchmarks,

1 Introduction

Cluster computing frameworks like MapReduce [10] and
Dryad | 19] have been widely adopted for large-scale data
analytics. These systems let users write parallel compu-
taions using a set of high-level operators, without having
1o worry about work distnbution and fault tolerance
Although current frameworks provide numerous ab-
straciions for accessing a cluster’'s compulational re-
sources, they lack abstractions for leveraging distnibuted
memory. This makes them mnefficient for an important
class of emerging apphcabons: those thal reuse inlerme-
diate results across multiple computations. Data reuse is
common wn many Herafive machine leaming and graph
algonithms, including PageRank. K-means clustenng.
and logistic regression. Another compelling use case is
inferactive data mining, where a user runs multple ad-
hoc queries on the same subset of the data. Unfortu-
nately, in most current frameworks, the only way o reuse
data between compulations (e.g., between two MapHe-
duce jobs) 1s 1o wrile it 10 an exiernal stable storage sys-
lem, e.g., a distnbuted file system. This incurs substantial
overheads due 1o data replication, disk VD, and serializa-

tion, which can dominate application execution Limes

Recogmizing thes problem. researchers have developed
specialized Irameworks for some ;4;1]1]:»;;:1:-.'-111. thatl re-
quire data reuse. For example, Pregel [22] is a system for
ilerative graph compulaions that keeps mtermediate data
in memory. while Hal.oop [7] offers an iterative MapRe-
duce interface. However, these frameworks only support
specific computalion patterns (e.g., looping a senes of
MapReduce steps), and perform data sharing imphcitly
for these patterns. They do not provide abstractions for
more general reuse. e.g.. 10 let a user load several datasets
mnto memory and run ad-hoc quenes across them.

In this paper. we propose a new abstraction called re-
siltent distributed datasets | RDDs) that enables efficient
data reuse in a broad range of apphcabons. RDDs are
fault-tolerant, parallel data structures that let users ex-
plicitly persist intermediate results i memory, control
their partitiomng o optimize data placement., and ma-
nipulate them using a nch set of operators

The main challenge in designing RDDs is defining a
programming inlerface thal can provide fault lerance
efhcieniiy 1'..";:-111[1_;_' abstractions lor in-memory storage
on clusters, such as distributed shared memory [24], key-
valpe stores [15], databases, and Piwccolo [27], offer an
interface based on fine-grained updates 1o mutable state
(e.g.. cells in a table). With this interface. the only ways
o provide fault tolerance are Lo replicate the dala across
machines or 1o log updates across machines. Both ap-
proaches are expensive lor data-intensive workloads, as
they reguire copyving large amounts of data over the clus-
ter network, whose bandwidth is far lower than that of
RAM. and they incur substantial storage overhead

In contrast to these systems, RDDs provide an inter-
face based on coarse-grained transformanons (e.g.. map.
hlter and poun) that apply the same operalion [0 many
data items. This allows them to efficiently provide fault
iolerance by logging the transformations used 1o build a
datasel (11s {ineage ) rather than the actual data.' If a parti-
uon of an RDD is lost, the RDD has enough information
about how it was denved [rom other RDDs 1o recompute

T TR
Checkpointing the duta i some KD may be useful when a lin-

cdge cham prows large, hoswwever, and W disguis how B0 oo ol 18 4.4

"We present Resilient Distributed Datasets (RDDs), a
distributed memory abstraction that lets
programmers perform in-memaory computations on
large clusters in a fault-tolerant manner.

RDDs are motivated by two types of applications
‘hat current computing frameworks handle
nefficiently: iterative algorithms and inferactive data
mining Tools.

™

N both cases, keeping data in memory can improve
oerformance by an order of magnitude.”

“Best Paper Award and Honorable Mention for Community Award”
- NSDI 2012

- Cited 392 times!

http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf



Ao

c WAWW.CS .b = k e | e Ir e d U

Spa

Discretized Streams: Fault-Tolerant Streaming Computation at Scale

Matei Zahana, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, lon Stoica

University of California, Berkeley

Abstract

Many “big data” applications must act on data in real
time. Running these applications at ever-larger scales re-
guires parallel platforms that automatically handle faults
and stragglers. Unfortunately, current distnbuted stream
processing models provide fault recovery in an expens-
sive manner, requiring hot replication or long recovery

times, and do not handle stragglers. We propose a new
processing model, discretized streams (D-Streams), that
overcomes these challenges. D-Streams enable a par-

allel recovery mechamsm that improves ethciency over
tradinonal replication and backup schemes, and tolerates
stragglers. We show that they support a nich set of oper-
ators while attaining high per-node throughput similar
to single-node systems, linear scaling to 100 nodes, sub-
second latency, and sub-second fault recovery. Finally,
D=Streams can casily be composed with batch and in-
teractive query models hke MapReduce, enabling nch
applications that combine these modes. We implement
D-Streams in a system called Spark Streaming.

1 Introduction

Much of “big data” is received in real time, and is most
valuable at its tme of armival. For example, a social net-
work may wish to detect trending conversation topics in

faults and stragglers (slow nodes). Both problems are in-
evitable in large clusters [12], so streaming applicanons
must recover from them guickly. Fast recovery is even
more important 1n streaming than it was in batch pobs:
while a 30 second delay to recover from a fault or strag-
gler 1s a nmsance n a batch setting, 1t can mean losing
the chance to make a key decision in a streamung setting.

Unfortunately, existing streaming systems have
limited fault and straggler tolerance. Most dis-
tributed streaming systems, including Storm [37],
TimeStream [33], MapReduce Online [11], and stream-
ing databases [5. 9, 10], are based on a continuous op-
erator model, in which long-running, stateful operators
receive each record, update internal state, and send new
records. While this model s quite natural, it mages 1l
difficult to handle faults and stragglers.

Specifically, given the continuous operator model,
systems perform recovery through two approaches [20]
replicarion, where there are two copies of each node
[3, 3], or upstream backup, where nodes buffer sent
messages and replay them to a new copy of a failed node
[33, 11, 37]. Neither approach is attractive in large clus-
ters: replication costs 2 x the hardware, while upstream
backup takes a long time to recover, as the whole system
must wait for a new node to senally rebuild the faled

NINFVWIINE

TwitterUtils.createStream(...)
.filter( .getText.contains("Spark"))
.countByWindow(Seconds(5))

- 2 Streaming Paper(s) have been cited 138 times



Spcwr‘l’(\z Yell

Seemlessly mix SQL queries with Spark programs.

Coming soon!

sglCtx = new HiveContext(sc)
results = sqlCtx.sql(
"SELECT * FROM people™)
names = results.map(lambda p: p.name)

(Will be published in the upcoming
weeks for SIGMOD 2015)



Spa

GraphX: A Resilient Distributed Graph System on Spark

Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, lon Stoica
AMPLab, EECS, UC Berkeley

{rxin, jegonzal, franklin, istoica}@cs.berkeley.edu

ABSTRACT

From social networks to targeted advertising, big graphs capture
the structure 1n data and are central 1o recent advances in machine
learming and data muming. Unfortunately, dwrectly applying existing
data-parallel wools to graph compulation tasks can be cumbersome
and inefficient. The need for intmtive. scalable tools for graph
computation has lead to the development ol new graph-parallel
systems (e.g., Pregel. PowerGraph) which are designed 1o efficiently
execute graph algonthms. Unfortunately, these new graph-paraliel
syslems do nol address the challenges of graph construction and
transformation which are olten just as problematic as the subseguent
computation. Furthermore, existing graph-parallel systems provide
limted fault-tolerance and support for interactive data mining

We introduce GraphX, which combines the advantages of both
data-parallel and graph-parallel systems by efficiently expressing
graph computation within the Spark data-paralle]l framework. We
leverage new ideas in distributed graph representation to efficiently
distnbute graphs as tabular data-structures. Similarly, we leverage

advances in data-flow systems 1o exploit in-memory computation

and fauli-tolerance. We provide powerful new operabions (o simphify
graph construction and ransformation. Using these primitives we
implement the PowerGraph and Pregel abstractuions in less than 20
lines of code. Finally, h} I..."hE'ii‘I.F][II'I:-.: the Scala foundation of ﬁ-p;ul_
we enable users o interactuvely load, transform, and compule on
massive graphs

1. INTRODUCTION

From social networks 1o advertising and the web, ng graphs can
be found 1n a wide range of important apphcations, By modeling the

and distnbuted systems. By abstracting away the challenges ol
large-scale distributed system design, these frameworks simplify the
design, implementation, and application of new sophisticated graph
JJI!-..1 Fl']lhl!l."q i L!.[_‘,'I’.'—'ﬁ\. ..Ill'.' :'1.'..1!-'..1”[ |.l.l :‘_'liJ.F"-h ‘I”lll'lll..'lll"l

While exastuing graph-parallel frameworks share many commaon
properues, each presents a slightly different view of graph compu-
tatson tatlored 1o either the onginating domain or a specific family
of graph .JI_:_:ut ithms and .JF'rE'rl'iL.L!u.Hh. Unfortunately, because each
framework relies on a separate rantime, it 1s difhcult to compose
these abstractions. Furthermore, while these [rameworks address
the challenges of graph computaton, they do not address the chal-
lenges of data ETL (preprocessing and construction) or the Process
of interpreting and applying the resulis of computaion. Finally. few
frameworks have built-in suppon for interactive graph computation.

Alternatuively data-parallel systems hke MapReduce and
Spark [12] are designed for scalable data processing and are well
suited o the wsk of graph construction (ETL). By exploiing
data-parallelism, these systems are lighly scalable and support
a range of fauli-tolerance stralegies. More recent systems like
Spark even enable interactive data processing. However, naively
expressing graph computation and graph algorithms in these
data-paralle]l abstractions can be challenging and typacally leads 1o
complex joins and excessive data movement that does not explot
the graph structure.

To address these challenges we introduce GraphX, a graph com-
putaiion system which runs in the Spark data-parallel framework.
GraphX extends Spark’s Resthent Distnbuted Dataset (RDD) ab-
straction to introduce the Resihent Dhstnbuted Graph (RDG), which
associates records with vertices and edges in a graph and provides

a collecuon of expressive computabbonal primutives. Using these

GRAPHX

graph = Graph(vertices, edges)

messages = spark.textFile("hdfs://...")

graph2 = graph.joinVertices(messages) {
(id, vertex, msg) => ...

h

hitps://amplab.cs.berkeley.edu/wp-
content/uploads/2013/05/grades-
araphx_with_fonts.pdf




BLINKDB

BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data

Sameer Agarwal’, Barzan Mozafari®, Aurojit Panda®, Henry Milner?, Samuel Madden®, lon Stoica**

t University of California, Berkeley

® Massachusetts Institute of Technology

*Conviva Inc.

{sameerag, apanda, henrym, istoica }@cs.berkeley.edu, {barzan, madden } @csail.mit.edu

Abstract

In this paper, we present BlinkDB, a massively parallel, ap-
proximate query engine for running interactive SQL queries
on large volumes of data. BlinkDB allows users to trade-
off query accuracy for response time, enabling interactive
queries over massive data by running queries on data samples
and presenting results annotated with meaningful error bars.
To achieve this, BlinkDB uses two key ideas: (1) an adaptive
optimization framework that builds and maintains a set of
multi-dimensional stratified samples from original data over
time, and ( 2) a dynamic sample selection strategy that selects
an appropriately sized sample based on a querys accuracy or
response time requirements. We evaluate BlinkDB against the
well-known TPC-H benchmarks and a real-world analytic
workload derived from Conviva Inc., a company that man-
ages video distribution over the Internet. Our experiments
on a 100 node cluster show that BlinkDB can answer queries
on up to 17 TBs of data in less than 2 seconds (over 200x faster
than Hive), within an error of 2-10%.

1. Introduction

Modern data analytics applications involve computing aggre-
gates over a large number of records to roll-up web clicks,

cessing of large amounts of data by trading result accuracy
for response time and space. These technigues include sam-
pling (10, 14), sketches |12}, and on-line aggregation [15). To
illustrate the utility of such techniques, consider the following
simple query that computes the average SessionTime over
all users originating in New York:

SELECT AVG(SessionTime)
FROM Sessions
WHERE City = ‘New York®

Suppose the Sessions table contains 100 million tuples for
New York, and cannot fit in memory. In that case, the above
query may take a long time to execute, since disk reads are ex-
pensive, and such a query would need multiple disk accesses
to stream through all the tuples. Suppose we instead exe-
cuted the same query on a sample containing only 10, ooo
New York tuples, such that the entire sample fits in mem-
ory. This would be orders of magnitude faster, while still pro-
viding an approximate result within a few percent of the ac-
tual value, an accuracy good enough for many practical pur-
poses. Using sampling theory we could even provide confi-
dence bounds on the accuracy of the answer [16].

Previously described approximation techniques make dif-

ferent trade-offs between efficiency and the generality of the

SELECT avg(sessionTime)
FROM Table

WHERE city=‘San Francisco’
WITHIN 2 SECONDS

SELECT avg(sessionTime)

FROM Table

WHERE city=‘San Francisco’
ERROR 0.1 CONFIDENCE 95.0%

hitps://www.cs.berkeley.edu/~sameerag/blinkdb

eurosys|3.pdft




O'REILLY"
hitp://shop.oreilly.com/product/06369220028512.do

Rl et
bl R SR,
- Wt S
VR e R reats
WA e, = g ! - -
- % -ﬁ;‘hl = _--|.\..- .'.."_" E " Fi
. r% oyt T
- Tk - -
e e R
~ e

g .
¥ k ll.. - "
-Li__'r af -lri. L;'_

eBook: $33.99 PDF, ePub, Mobi, DAISY
rint: $39-99 Shipping now!

Learning™ -

Spark

LIGHTNING-FAST DATA ANALYSIS

Holden Karau, Andy Konwinski, $3O @ Amazon:
Patrick Wendell & Matei Zaharia

Nttp://www.amazon.com/Learning-Spark-Lightning-
-ast-Data-Analysis/dp /1449358624




1 Community | ApacheSp: x §

C' [ https//spark.apache.org

Spark” ..

Latest News

Spark Community

Mailing Lists

4Na announcements




$databricks

Lab: Intro to Spark devops on DSE 4.6 / page 1

Lab: Intro to Spark 1.1 on DSE 4.6

‘Cassandra + Spofk

Lab created on *:“-‘-ep__ 2, 2014 (last updated Dec 9, 2014)
(please send edits and corrections to). sameerf@databricks com

This lab was created with collaboration from engineers at D'—ita‘:' tax and Databricks, specifically; Piotr Kotaczkowski
(DS), Holden Karau (DB), Pat McDonough (DB), Patrick DB) and Matei Zaharia (DB)

Estimated lab completion time: 2.5 hours

License @@@@

Objective:

This lab will introduce you to using Apache Spark 1.1 on DataStax Enterprise Edition 4 6.0 in the
Amazon cloud. The lab assumes that the audience is a beginner to both Cassandra and Spark.
So the document walks the reader through installing DSE, learning Cassandra and then learning
Spark. [he ulimate goal here is to introduce students to Cassandra + Spark in a devops
manner: looking at config files, writing some simple CQL or Spark code, breaking things and
troubleshooting Issues, exploring the Spark source code, etc. Although the ideal way to use this
lab is actually type + run the commands in a parallel environment, the lab can still be used for
purely reading. All the output of the commands are pasted in this lab, so you can get a very clear
idea of what would happen if you had actually run the command

The following high level steps are part of this lab:
e Connectvia SSH to your ECZ instance
e Create a new keyspace and table in C* and add data to it
e Start the scala based Spark shell
e Import the fresh data into a Hpa’rh RDD

http://tinyurl.com/dsesparklab

- 162 oleole=1
- "'_‘. I-..-" L "'w.._.-f A o)
U

- DevQOps style
- For complete beginners

- Includes:
- Spark Streaming
- Dangers of
GroupByKey vs.
ReduceByKey



$databricks

Labs: Intro to Hadoop Ecosystem on CDH 5.2

Labs: Intro to HDFS/YARN & Apache Spark on CDH 3.2

g . Spqu}

Lab created on: Dec, 2014 | N }
(please send edits and corrections to): sameerfi@databricks.com

hitp://tinyurl.com/cdhsparkiab

Estimated lab completion time: 2 hours (spread throughout the day‘_}|

- DevOps style

License: @@@@

Objective: For complete beginners
This lab will introduce you to using 3 Hadoop ecosystem components in Cloudera’s distribution
HUFS, Spark 1.1.0 and YARN. The lab will first walk you through the Cloudera Manager _ | NC | U d es’

installation on a VM in AWS, followed by a CDH 5.2 binaries deployment on the same node. :

Then the lab will introduc e students to Hadoop in a DevOps manner: experimenting with the - Pys p(] I"I(
distributed file system, looking at the XML config files, running a batch analytics workload with

Spark from disk and from memory, writing some simple scala Spark code, running SQL Spgrk SQL
commands with Spark SQL, breaking things and troubleshooting issues, efc. = SpCIrk—SU bm”

The following high level steps are in the initial part of this lab:
Connect via SSH to your Amazon instance
Install Cloudera Manager and CDH 5.2
Create a new folder in HDFS and add data files to it
Start the scala based Spark shell
Import the fresh data into Spark a RDD




Spark Packages x % Y

> spark-packages.org

a7
Spﬂf KAPaCkageS Feedback  Registerapackage Login  Find a package

A community index of packages for Apache Spark.
33 packages

databricks/spark-avro

Integration utilities for using Spark with Apache Avro data
Latest release: 0.1 (11/27/14) / Apache-2.0 (A5)

Bl i
i .||_.-::_:| W

dibbhatt/kafka-spark-consumer

Low Level Kafka-Spark Consumer
/ No release yet (R3)

2 streaming 1 kafka

sigmoidanalytics/spork
Pig on Apache Spark




...........

RDD FUNDAMENTALS

® databricks



INTERACTIVE SHELL

ED ubuntu@ip-10-0-53-24: ~

ubuntuf@ip-10-0-53-24:~% dse spark
Welcome to

I/ /7
AN N A v
__

._/\_, /_/ [ /\\ version 0.9.1

/
A

Using Scala wversion 2.10.3 (Java HotS5Spot (TM) 64-Bit Server VM, Java 1.7.0 51)
lype 1n expressions to have them evaluated.

Type thelp for more information.

Creating SparkContext...

Created spark context..

Spark context available as sc.

Type 1in exXpressions to have them evaluated.
IType :‘help for more information.

scala> val myRDD = sc.cassandraTable ("tinvkeyspace™, "keyvaluetable™)
myRDD: com.datastax.bdp.spark.CassandraRDD[com.datastax.bdp.spark.CassandraRow] = Cassan
draRDD[0] at RDD at CassandraRDD.scala:32

scala> myRDD.count ()
res: Long = o

scala> I

(Scala & Python only)



Driver Program

i b s ] = - - e

Worker Machine

10.4 {Jova HotSpot (TH} d4-Bit Server

have thes svaloated

=1
(]
|
i
b
=
]
a

AVAlLaADIE &® XD

o have thes svaluated.

1ATOEMET L0 -

eeyvalueRDD = ag.cassandraTable ("tinykeyspace™, "keyvalustable™)
Sam, datastax ., ap-ark

or . pdd. CassandraRDd | oom . datastax .. spark. con
or . Camsandrafcow] = CassandraRDD[0 I

ALILY BL

Worker Machine




more partitions = more parallelism

SR i 1T e :
: item-1 | item-6 | item-11 | item-16 | item-21 :
! item-2 . item-7 . item-12 : item-17 - item-22 :
, item-3 | item-8 | item-13 | item-18 | item-23 ,
: item-4 - item-9 - item-14 - item-19 @ item-24 :
. item-s | item1o | itemas | item2o | item-2s
I_ . . . - I
| I I | | |
[ . )

. ]




RDD w/ 4 partitions

logLinesRDD

An RDD can be created 2 ways:

_ Parallelize a collection
- Read data from an external source (S3, C*, HDFS, etc)



PARALLELIZE

# Parallelize in Python
wordsRDD = sc.parallelize([“fish", “cats’, “dogs”])

- Take an existing in-memaory
collection and pass it to
SparkContext’s parallelize
method

- Not generally used outside of
prototyping and testing since it

= IR requires enfire dataset in
arallelize in Scala .

) val wordsRDD= sc.parallelize(List("fish", "cats", "dogs")) memory on one machine

(f’ // Parallelize in Java

=) JavaRDD<String> wordsRDD = sc.parallelize(Arrays.asList(“fish", “cats‘, “dogs”));



READ FROM TEXT FILE

# Read a local txt file in Python
linesRDD = sc.textFile("/path/to/README.md")

- There are other methods

to read data from HDFS,
C*, S3, HBase, etc.

// Read a local txt file 1n Scala
val linesRDD = sc.textFile("/path/to/README.md")

_
i
1

// Read a local txt file in Java
) JavaRDD<String> lines = sc.textFile("/path/to/README.md");

(>N

L



-

logLinesRDD
(input/base RDD)

errorsRDD




~errorskRDD

.coalesce( 2) E
: v '
: } cleanedRDD »
" .
.collect( )

[eci-ureTdip-10-0-12-60 =|F dse spark

wversion L.1.0

Uaing Seala wepalon 2.10.4 (Jawa Haripor (THp €4-Bit Zozver VM, Java 1.7.8_T1)
Iype ia expressicons co Bawe thes svalosted.

Type 1Eelp for mores inforsacion.

Ereating SparkCOncelta u

Created spark combext.,

fSpark context avallabie ay as,

Iype in exprassidas =0 Eave thes evaluated,

Type ‘Eelp for moare isformarian.

scalayr val keyvalusRDD = ao.cassardraTable {"cinpkeyspace®, "kepyvaluscable®)
L i ExyraloeRiD: com.dstastax. rpark. connector . rod. CasmandrakDO | com. datastax , spark. con
nesies . Cappandiafow] = CagsacdzalOD[0] at RDD a% Cassandsafld.scale:43

-
L s=alar eyvval usfiil. coant )
rends Long = 1




.collect( )

[eci-urer@ip-10-0-13-60 =}% dee mpazk
W] ocome Eo

Ny A P Y werelon D.0a 0

TH) £4=041t Serves Ve, Jawa 1.7.0 71§
Iype 1 expressicns ro Bave Tthes evaluarsd.

Iype 1help for more informacion

SIEATing SEariConteRt. .

Crested Fpark combext..

Spark context avallasbies ap ac,

UEing Sedli SeEdios J-10.4 (Jawa HAEIESE |

I8 LE EXprasilofsy Zo EiTe LHéSs oVElibel s,
Iype tEElp for mare (SfOrmarban.

acalar val keyvalueRDD = a0, caspardraTable {"cinykeyspace™, "pyvaluscabl="]
EwyrraloeRID: com.dACANCAK, FpALE. ConNRector ., Iod - CanpandrakDl [com. datastex , Fpack. com

nac salld,;pcalac4

r.Capsandrakcs] = Cagaandrafll[0] a% RID Bt CTapmais

s=ealar eeyvvalwsBDl. =sant )
rendy Long = 4

(1= BT T}

Driv



ogLinesRDD

o W
®
i
L
L
g |
L]
W
™ Tung prmrfg] bR cah v il saw spany
[l & o b
-_— - —n  e— I—
FTF g v

" J ¥ Feidlhs | L]
fod g Bmabs Whidies 4.L0.8 (Sers BeElEed rIE di-Bal DR YR deve B80T
TV 1L AR AR SO0 NPT B TTLLEAT A
Ty sBmip Pro sepw gofrres s m
frmrniing Symidten
FEaEleE ARl 40
raph s § .
Frur= i= emgpine : bmre shew reaievind
Finhea IRSLE Tl Eedd AR L k.
vinlur =al i feediCh = - g T | | ™ | e b e ™, Ty e e T

X <o Sedmal e il A, Ui el aPIE i Al af o rpeia B e

T T LA AR v L ’ ] ! L TELL ]
réalir wnpersl eml, ek
ISARF LEaa =
iabis i




L

filter( /x) gff

2
.coalesce( 2) ’g’fg

.collect( )

pw Fperk
LT ]

~Error, ts; msgt- - Error, ts, m
EEUEEﬁgﬁggsg:w%:r;:::h Ad-Tire Asgver Ve, Java

Croak

b
Ty

- Brror,ts,msg1. ... Error, ts,m

sg4

581

vl ErirralueBlDl = se .o ablw | "t iniyEFeyrrpasce®™,. "Eapvaluwtabla™j
&

ryraluvelM: dcom. latarian, perk . Sonecior . 2okl T poacd e a WO [ coies . mrian o i . S
A - o

FERRIFARGE] = CaseranilfalDRio] ap BED &0 S e

A Esyws bus DD, onant { §
anl1 Loamng = 4

logLinesRDD

errorsRDD

cleanedRDD




- O O S I G S I S I S e G e D I I I G LT I S I G S S e s .
-

- - I O S - O S - .

logLinesRDD

errorsRDD

cleanedRDD

Pipelined
Stage-1



it

Inpgommrifue: jE=E 1] s o |1 sae wparp

e b

Feldild 1.5.8

ity maia vhddien S.LELN (Swee EREgen TE dH-ERD DiawEl TR dwee 098 T30
TETE 18 PEGIAHILPEE Co BEPT UEEE TERLENTA

FTypm Bmii Fer ey o frrses s m

fos et iy Ty e

= CIES TR A S T

lipaps s=rvep sawijasis o o=

= im0 emjisaiehi 25 kare shew s bessnd

Fivis RBLE TH1 Eeis GNCHBELRE.

rmalas wak e erdlh ¢
Al BER Com e ddE
ozt pr . Cosppnmarssi = Iy

in iy prgasie ™, T e i b

A0 i . G ileild ARLE | a AL a R
i f L TEaL ]

pdalie Begehl el e

yealy Sdmm = q

logLinesRDD

errorsRDD

cleanedRDD



L §
Typm
Trratin

park
Tyrs &

L T
FEEL L]
=iy ey
1 Tgmad
dernl |
B

e (Xl )
=il TH = ATl
al erpralaed
B il
T s
LR i

1




cleanedRDD

errorMsg1RDD

.collect( )




7

iy
=

ﬁ:"i,

4 IeanedRDD

errorMsg1RDD

.collect( )




RDD GRAPH

Dataset-level view: | - Partition-level view:

b

logLinesRDD logLinesRDD
(HadoopRDD) |
~ Path ="hdfs://. .. Task-1f. - .
' Task-3
Task-4

errorsRDD
(filteredRDD)

errorsRDD

func = _.contains(...)
shouldCache=false




LIFECYCLE OF A SPARK PROGRAM

1) Create some input RDDs from external data or parallelize o
collection in your driver program.

2) Lazily tfransform them to define new RDDs using
fransformations like filter() ormap()

3) Ask Spark to cache() any intermediate RDDs that will heed to
pe reused.

4) Launch actions such as count() and collect() to kick off a
parallel computation, which is then optimized and executed
DY SEOTK.



TRANSFORMATIONS (lozy

map() intersection() cartesion()
flatMap() distinct() pipe()
filter() groupByKey () coalesce()
mapPartitions() reduceByKey () repartition()
mapPartitionsWithIndex() sortByKey () partitionBy()
sample() join()

union() cogroup()

- Most transformations are element-wise (they work on one element at a time), but this is not
frue for all franstormations



ACTIONS

reduce()
collect()
count ()
first()
take()
takeSample()

saveToCassandra()

takeOrdered()
saveAsTextFile()
saveAsSequenceFile()
saveAsObjectFile()
countByKey ()

foreach()



HadoopRDD
F1ilteredRDD
MappedRDD
PairRDD
ShuffledRDD
Uni1onRDD
PythonRDD

TYPES OF RDDS

* DoubleRDD
* JdbeRDD
s, Jsonrblb
* SchemaRDD
* VertexRDD
* EdgeRDD

e CassandraRDD (DataStax)

e GeoRDD (ESRI)

* EsSpark (ElasticSearch)



- | spark/RDD.scala at 6c98c. x
— () spark/RDD.scala at 698

- EEE—

< C & GitHub, I

GitHub

sg}ark

6c98c29ae0 ~ spark

aarondav

github.com/a

Explore Features Enterprise Blog

& Watch 538

5 . & .
scala / org / apache / spark / rdd / RDD.scala
et Mgl Nl | il el Bes i e 1 S et [fal 1 el Nl ]

RK _'"--.".5'—5] se standard Ac jgregator code pal h for coun ._-f."fu— and cou

.ln!ﬂﬂﬂ B2V - AA0E B "S08T ¢

1384 lines (1235 s

Raw Blame

o Star 2.884

History




=y

r :;_J' oEparl"-":U"E'Ei":"rr‘rain-sca- X %_“
\ C' | & GitHub, Inc. [US] | https://github.com

-

GitHUb : Explore Features Enterprise Blog

% Star 2890 Y Fork 2526




RDD INTERFACE

1) Set of partitions (“splits”)

2) List of dependencies on parent RDDs
3) Function to compute a partition given parents
k 4) Optional preferred locations

k 5) Optional partitioning info for k/v RDDs (Partitioner)

This captures all current Spark operations!




EXAMPLE: HADOOPRDD

Partitions = one per HDFS block
Dependencies = hone

Compute (partition) = read corresponding block

 preferredlLocations (part) = HDFS block location

* Partitioner = none



EXAMPLE: FILTEREDRDD

Partitions = same as parent RDD
Dependencies = “one-to-one” on parent

Compute (partition) = compute parent and filter it

k preferredLocations (part) = none (ask parent)

¥ Partitioner = none



EXAMPLE: JOINEDRDD

Partitions = One per reduce task
Dependencies = “shutfle” on each parent

Compute (partition) = read and join shuffled data

k preferredlLocations (part) = none

% Partitioner = HashPartitioner(numTasks)



READING DATA USING THE C* CONNECTOR

Keyspace  Table

val cassandraRDD = sc l l
.cassandraTable(“ks”, “mytable”)

Server side column { .select(“col-17, “col-3")

. row selection .wher'e(”col-S = ?”, “'blue”)



INPUT SPLIT SIZE

(for dealing with wide rows)

Start the Spark shell by passing in a custom cassandra.input.split.size:

ubuntu@ip-10-0-53-24:~% dse spark -Dspark.cassandra.input.split.size=2000
Welcome to

/[ __/__ A/
O o g
[ _/\__/_/ /_[/\_\ venrsion 0.9.1

i

Using Scala version 2.10.3 (Java HotSpot(TM) 64-Bit Server VM, Java
1.7-0 51)

Type in expressions to have them evaluated.

Type :help for more information.

Creating SparkContext...

Created spark context..

Spark context available as sc.

Type in expressions to have them evaluated.

Type :help for more information.

scala>

The cassandra.input.split.size parameter defaults to 100,000. This is the approximate
number of physical rows in a single Spark partition. If you have really wide rows
(thousands of columns), you may need to lower this value. The higher the value, the
fewer Spark tasks are created. Increasing the value too much may limit the parallelism
level.”



hitps://github.com/datastax/spark-cassandra-connector

Spark Executor

Spark-C*
Connector

C* Java Driver

- Open Source

- Implemented mostly in Scala

- Scala + Java APIs

- Does automatic type conversions



https://github.com/datastax/spark-cassandra-connector

Spark Cassandra Connector

Lightning-fast cluster computing with Spark and
Cassandra

This library lets you expose Cassandra tables as Spark RDDs, write Spark RDDs to Cassandra tables,
and execute arbitrary CQL queries in your Spark applications.

Features

=

Compatible with .u.parma Cassandra version 2.0 or higher and Datastax enterprise 4.9
com [ZI'rHT.lt:llE! with Apache Spark 1.0 and 1.1

Exposes Cassandra tables as Spark RDDs

Maps table rows to CassandraRow nt||1:1r1'fu or tuples

Offers customizable object mapper for mapping rows to objects of user-defined cla
Saves RDDs back to Cassandra by il“|[|||r it saveToCassandra call

Converts data types between Cassandra and Scala

Filters rows on the server side via the CQL WHERE clause
Allows for execution of arbitrary CQL statements
Plays nice with Cassandra Virtual Nod




“Simple things
should be simple,
complex things
should be possible”

- Alan Kay




DEMO: DATABRICKS CLOUD GUI

® databricks



W

SPARK RESOURCE MANAGERS

® databricks



WAYS TO RUN SPARK

- Local B

/ Stafic Partitioning

g
* - Standalone Scheduler Ty

% - YARN Hyg
> Dynamic Partitioning
- Mesos iy

A/ \/\4



Fistery: 2 MR APPS RUNNING

JobTracker NameNode




—
LOCAL MODE



LOCAL MOD

Sl F?wﬁi 3 options:
—- = S = - local
- local[N]
JVM: Ex + Driver - local[*]

RDD, P1
RDD, P41

> ./bin/spark-shell —-master local[12]

RDD. P3
> ./bin/spark-submit ——name "MyFirstApp"
——master local[12] myApp. jar

Threads

val conf = new SparkConf()
.setMaster("local [12]")

Worker Machine .setAppName(“MyFirstApp")
.set("spark.executor.memory", “3g")

val sc = new SparkContext(conf)




o

_(
L

STANDALONE MODE



& SPARK & ANDALONE

different spark-env.sh

b
% — SPARK_WORKER_CORES

Internal )
Threads e

O Q.

SSD SSD

> ./bin/spark-submit —-name “SecondApp"
——master spark://hostil:porti

. :
myApp - Jal spark—env.sh é — SPARK_LOCAL_DIRS




)
By SPARK SIANDALONE

different spark-env.sh

b
é — SPARK_WORKER_CORES

m
=
) (=)
—'
o

i

e, 3 F e Y
—

) (
(

) (T)

A Il.|I"""|-.
(=
-

(=)

<)

Threads
"‘-\H
o More

I'm HA via
LooKeeper

-

O Masters _

can be J
™

added live wi

Spark
Master

$SD $SD $SD @ SSD $SSD

> ./bin/spark-submit —-name “SecondApp"
——master spark://hosti:porti,host2:port?2

myApp. jar

®. Vs o d

b
spark—env.sh é — SPARK_LOCAL_DIRS



& SPARK STANDALONE

(multiple apps)




& SPARK SANDALONE

(single app)

SPARK_WORKER_INSTANCES: [default: 1] # of worker instances to run on each machine

SPARK_WORKER_CORES: [default: ALL] # of cores to allow Spark applications to use on the machine

%

conf/spark-env.sh SPARK_WORKER_MEMORY: |default: TOTAL RAM - 1 GB] Total memory to allow Spark applications to use on the machine

SPARK_DAEMON_MEMORY : [default: 512 MB| Memory to allocate to the Spark master and worker daemons themselves



By STANDALONE

Standalone seffings

- Apps submitted will run in FIFO mode by default

spark.cores.max: maximum amount of CPU cores to request for the
application from across the cluster

spark.executor.memory: Memory for each executor



ﬁ__—lﬂhﬁ”ﬁﬂ

Dt A5 A Unel_ant ey SOark Master At <nark:[/10 M

¢ 2 eC2-09-08~1 33- 220 us-west- 2 compute. amazonaws.com

Spor"i""" Spark Master at spark://10.0.64.177:7077

Total potential memory this Spark cluster has
access 101s 4 GB (aka sum of how much
memory each Worker below has access [0)

URL: sparn

Workers.: |

cores. ./ |

Memory: 4

Applications: [ Running

Drivers: O Running, 0 Completed Amount of potential memory this
particular Hmrk worker has access 1o

Workers

Id Address State Core . Memory

= - i
(] | i
i
-

Running Applications

D Name Cores Memeory per Node Submitted Time User State Duration

Completed Applications

ID Name Cores Memory per Node Submitted Time User State Duration




' Spark Master at sparke//10.012.... x | ==

€« 9 ec-54-187-238-98,us-west-2.compute.amazonaws.com: /50 - " Googie
P

spc,,:j{i‘? Spark Master at spark://10.0.12.60:7077

URL: spark//10.0.12 607077
Workers: 1

Cores: 3 Total, 3 Used

Memory: /.7 GB lotal, 912.0 MB Used
Applications: 1 Running, 0 Completed
Drivers: 0 Running. 0 Completed
Status: ALIVE

Workers

Address State Cores Memory

10.0.12.60:35935 ALIVE 3 (3 Used) 7.7 GB (912.0 MB Used)

ID Memory per Node Submitted Time User State Duration

app-20141110204631-0000 @ Spark shell . 912.0 MB 2014/11/10 20:48:31 ec2-user RUNNING 23 min

Completed Applications

1D Name cores Memory per Node Submitted Time user State Duration




<l (o ol |

Spark Worker at 10.0,12.60:35935 4

“ ec2-54-187-238-98.us-west-2.compute.amazonaws.com: /18] * | | BY ~ Google P ¥ E 4 H

gpc,,’-k‘f Spark Worker at 10.0.12.60:35935

ID: worker-20141110195851-10.0.12 60-35935
Master URL: spark /10012607077

Cores: 3 (3 Used)

Memeory: 7.7 GB (512.0 MB Used)

pack 1o Master

Running Executors (1)

ExecutoriD Cores State Memory Job Details

0 3 RUNNING 212.0 MB ID: app-20141110204831-0000
Name: Spark shell
User: cassandra




ﬁ Spark shell - Spark Jobs * Y

€ & ec2-54-148-231-117.us-west-2.compute.amazonaws.com:

Spark Jobs ~toraqe Jironment xecutors Spark

Spark Jobs (?)

Total Duration: 39 min
Scheduling Mode: FIFO
Active Jobs: U
Completed Jobs: 4
Failed Jobs: 0

Active Jobs (0)

Job Id Description Submitted puration stages: Succeeded/Total Tasks (Tor all stages):. Succeeded/Total

Completed Jobs (4)

Jobid Description Submitted Duration Stages: Succeeded/Total Tasks (for all stages): Succeeded/Total

3 ~ollect at <console>:19 2014/12/01 16:18:2« 38 ms 1/1 (1 skipped) 2/2 (2 skipped)
2014/12/01 16:18:22 55 ms 1 (1 skipped) 2/2 (2 skipped)
2014/12/01 16:18:07 4/4

2014/12/01 16:17:39 0.3 S | 2/2

Failed Jobs (0)

Job Id Description Submitted Duration Stages: Succeeded/Total Tasks (for all stages): Succeeded/Total




ﬂ | Spark shell - Spark Stages x §

C' 7 ec2-54-148-231-117.us-west-2.compute.amazonaws.com:4040/stages

SDO'-K Jobs Stages Storage Environment Spark shell application |

Spark Stages (for all jobs)

Total Duration: 39 min
Scheduling Mode: FIFO
Active Stages: 0
Completed Stages: 5
Failed Stages: O

Active Stages (0)

Stage |ld Description submitted Duration Tasks: Succeeded/Total Input Output Shuffle Read shuftie Write

Completed Stages (5)

Stage Tasks: Shuffle
id Description Submitted Duration Succeeded/Total Input Output Read

2014/12/01 28 ms | 212 552.0

16:18:24 B

2014/12/01 _2{2__

16:18:22

2014/12/01 212

16:18:07

2014/12/01 b 212

16:18:07

2014/12/01

16:17:40




| Spark shell - Storage x %

\ C' [] ec2-54-148-231-117.us-west-2.compute.amazonaws.com:4040/storage,

Storage

Soark’

Storage

F\/\/\
A/ \/\4

Size In 1ze | Size on
Disk

Cached Fraction
Cached Memory

2.0 3 00B

RDD
Name Storage Level Partitions

-+ I y Deseralized 1x 2 100% 992

Fil:‘-[,}lil_alht'.[j




E ") Spark shell - RDD Storage x § %
€« C | |} ec2-54-148-231-117.us-west-2.compute.amazonaws.com:4040/storage/rdd/:

Sporkﬂ JODS ..'?"'.'.:_ 5g E:C}[-age ' -t Fxe ~utors S park cshaell apk lic atiol

RDD Storage Info for 5

Storage Level: Memory Deserialized 1x Replicated
Cached Partitions: 2

Total Partitions: 2

Memory Size: 552 0B

Disk Size: 0.0 B

Data Distribution on 1 Executors

Host Memory Usage Disk Usage

[

localhost: 38329 552.0 B (265.4 MB Remaining) 00B

2 Partitions

Block Name Storage Level Size in Memory Size on Disk Executors
rdd 5 0 Memory Deserialized 1x Replicated 4240 B 00B localhost: 38329

rdd 5 1 Memory Deserialized 1x Replicated 12808 00B localhost: 38329




ﬂ sark shell - Environment X ‘

ec2-54-148-231-117.us-west-2.compute.amazonaws.com:4

SoQiKS o  Suges Swrage | Enveonmen

Environment

Runtime Information \

Name Value

Java Home usr/java/jdk1.7.0_67/jre

Java Version 1.7.0 67 (Oracle Corporation) y

Scala Version version 2.10.4

Spark Properties

Name Value

F\/\/\
\/\/\4

spark.app.id

spark.app.name Spark shell

spark.driver.host ip-10-0-125-125 us-west-2_ compute.internal
spark.driver.port 29091
spark.executor.id driver

spark fileserverun  http:/110.0.125.1235:5699¢
spark_jars

spark.master local[*]

— . . —

spark.repl.c http://110.0.125.125:57870

spark.scheduler.mode FIFO

spark tachyonStore. folderName spark-asc91951-a6b4-4425-badc-a1e2e9146a70

System Properties

Name




ﬁ' Y| Spark shell - Executors (1) % W Y

= C | ) ec2-54-148-231-117.us-west-2.compute.amazonaws.com:4040/executors

SPCM' K Jobs olages Storage Env EXecutors

Executors (1)

Memeory: 532.0 B Used (265.4 MB Total)
Disk: 0.0 B Used

Executor RDD Memory Disk Active Falled Complete Task Shuffle Shuffle Thread
ID Address Blocks Used Used Tasks Tasks Tasks Time Input Read Write Dump

'\/\/\
\ /\/\4

<driver= 29| 2 002.08/ 0.0B O 0 10 ' 740 10600 00B 737.0B Thread

2654 MB ms B ki




ﬁ' 'Y Spark shell - Thread dum; % §
\ C [ ec2-54-148-231-117.us-west-2.compute.amazonaws.com:4040/exe«

SDQIK Jobs Stages Storage Environment Executors Spark shell applicatior

Thread dump for executor <driver>

Updated at 2014/12/01 16:57:39

hread 2: Reference Handler (WAITING)

[ hread 3




Spark shell - Thread dum; x §

ec2-54-148-231-117.us-west-2.compute.amazonaws.com:4




YARN MODE



By SPARK YARN

& Container

& Container




By SPARK YARN

Scheduler
Apps Master

e Container

& Container




) iy SPARK YARN

(client mode)

Client #1

=

B App Master




) iy SPARK YARN

(cluster mode)

- Does noft support Spark Shells

B App Master




YARN seftings

--num-executors: controls how many executors will be allocated

--executor-memory: RAM for each executor

--executor-cores:

Dynamic Allocation:

spark
spark
spark
spark
spark
spark

https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/ExecutorAllocationManager.scala

.dynarr
.dynarr
.dynan
.dynanm
.dynar

.dynan

icAllocation

1cAllocation
icAllocation
1cAllocation
icAllocation

CPU cores for each executor

.enabled
icAllocation.

minExecutors

.maxgeExecutors
.sustainedSchedulerBacklogTimeout (N)
.schedulerBacklogTimeout (M)
.executorIdleTimeout (K)




YARN resource manager Ul:

(No apps running)
[kl =) = o

¥ [| Cluster1 - YARN (MR2Inc % | All Applications

C [ 104.130.159.101:8088/cluster d. 57 D. & L @,

All Applications

Cluster Metrics

About ApDpS ApPpS Apps Apps g Memory Memory Memory VCores VCores @ Active Ded
Nodes Submitted Pending Running Completed Running Used Total SEC Total Reserved Nodes
Applications 0 0 0 0 U 0B 2./1GB 0B

NEW User Metrics for dr.who

NEW SAVING : | - |

SUBMITTED Apps Apps ADpPS Apps containers Ccontainers

ACCEPTED Submitted Pending Running Completed Running Pending

RUNNING 0 0 0 0

FINISHED

FAILED Show 20 v entries

KILLED

Scheduler Name < Application Type Queue £ StartTime £ FinishTime < State 2 FinalStatu
| i = ;

NO data avallable In table

» Tools Showing 0 to 0 of 0 entries




[ec2-user@ip-10-0-72-36 ~|$ spark—-submit —--class
org.apache.spark.examples.SparkPi —--deploy-mode ——master yarn
/opt/cloudera/parcels/CDH-5.2.1-1.cdh5.2.1.p0.12/jars/spark-
examples-1.1.0-cdho.2.1-hadoop2.5.0-cdh5.2.1. jar 10

i 3 [ |
: 1 e
. L e,
o 2 AR
. rl-l':l-i I"... r
¥ L A o



ApPpP running in

ec2-54-149-62-154 us-west-2.compute.amazonaws.com

All Applications

Cluster Metrics

1
=

-!"!u-.' R = il

=
e
ol |

= U DN LA

—

=
<
o L

3 0

User Metrics for dr.who

=
=
I-[._'r

Search

TnMioIE s

Show 20 ¥ entries

afuled

Thu, 04 Dec FINIS] SUCC DED HIStony
2014 15:31:14

GMT

application_1417641624005

Thu, 04 Dec

application 1417641624005
2014 15:26:19

application 1417641624005 0001 Histon

showing 1 to 3 of 3 entries




ec2-54-149-62-154.us-west-2.compute.amazonaws.com

_[&'Za[azla}

User: ec2-user
Name: Spark Pi
Auﬁi-.éatlens Application Type: SFPARK

Application Tags:
NEW SAVING State: FINISHED
SUBMITTED FinalStatus: SUCCEEDED
ALLEIED Started: 4-Dec-2014 10:30:43
E‘frjlr;:.z ;5 Elapsed: 31sec
FAILED Tracking URL: History

KILLED Diagnostics:

Scheduler

] TI'_.Il.- o =
00ls Total Resource Preempted: <memory.0, vCores 0>

Total Number of Non-AM Containers Preempted: 0
Total Number of AM Containers Preempted:
Resource Preempted from Current Attempt: <memory 0, vCores:0>
Number of Non-AM Containers Preempted from Current Attempt: |
Aggregate Resource Allocation: 57388 MB-seconds. 45 vcore-seconds

ApplicationMaster
Dt Numbel start 1ime Node

A e -
ALell

4-Dec-2014 10:30:43 ip-10-0-72-36_us-west-2 compute.internal: 8042




lec2-user@ip-10-0-72-36 ~|$ spark—-submit —--class
Oorg.apache.spark.examples.SparkPi ——deploy—-mode ——master

yarn /opt/cloudera/parcels/CD
examples-1.1.0-cdh5.2.1-hadoo

1-5.2.1-1.cdh5.2.1.p0.12/ jars/spark-

N2.95.0-cdhd.2.1. jar 10

Ly



ApPpP running in mode
« > C

ec2-54-149-62-154.us-west-2.compute.amazonaws.com

All Applications

About
Nodes

Applications

User Metrics for dr.who
W SAVING | _ —
U ‘*I‘[‘Tn—l_I _ ApPPS _APPS
-; CEPTEL submitted Fending
UNNING 0 0
~Ir.I&1H:E.I

FAILED Show 20
KILLED

v entries

Name
application 1417641624005 0004

rootec2- Thu 04 Thu. 04
User Dec 2014 Dec 2014
19:37:10 15:37:54
GMT GMT
application 1417641624005 0003 ec?2 d rootec2- Thu. 04 Thu, 04
user Dec "4114 D :"I‘JH

e
E ~"}

e

E =)



* Cluster

About
Nodes
Applications

N Ellllﬁhli

NEW SAVING

SUBMITTED
ACCEPTED
RUNNING
FINISHED
FAILED
KILLED

Scheduler

» Tools

ApplicationMaster
Attempt Number

ApP running in mode

User: ec2-user
Name: org.apache.spark examples SparkPi
Application Type: SPARK
Application Tags:
State: FINISHED
FinalStatus: SUCCEEDED
Started: 4-Dec-2014 10:37:10
Elapsed: 43sec
Tracking URL: History
Diagnostics:

Total Resource Preempted:

Total Number of Non-AM Containers Preempted:

Total Number of AM Containers Preempted:

Resource Preempted from Current Attempt:

Number of Non-AM Containers Preempted from Current Attempt:
Aggregate Resource Allocation:

Start Time

Loggea In as: dr.who

Application Overview

Application Metrics
<memory.0, vCores:0>
O
O
<memory:0, vCores:0>
O
837035 MB-seconds, 66 vcore-seconds

Node

4-Dec-2014 10:37:10 Ip-10-0-72-36_us-west-2 compute. internal’s042




+ Application
About

Jobs

App running

ec2-34-149-62-154.us-west-2.compute.amazonaws.com:19¢

Log Length: 2

f .sparkStaging/
2/e4 18:37

/84 108:37

.I..h
(SR
IJ l‘l\.

I

L
|_|-
[l

b B R e

h*

il

o 37

i
= oA =T

A

G
o
"

.[.'. Sy

% e

9
= =
o O s O |
Ll

b'_i-
g

[
[y
4

2 p

‘.
~ ==~

g Ll L

[ C

]

L B
T
—

5

ot ot
ft et
s
el
s
L i
| =

|-~
B3 B S BRI

® 0 o

l.l- .r'-.- .r-.- .r"\.

&
I
|
Lan
et |

L
I—...l
i
£
—l_'
T A l
o I
_I-I-'I"'
7 8
i
_._‘—F..
-
—

fud b
)

-.l.'l _Il"\
@ ©
R =

bk ot o o o

fret st ot et

B
)
s

~

0
I

.[-. _1’-\.
|

X
S

.I..\‘

L
]
L Ld Ld L

1 = =

&
B

-I-.l

e

i i el fl el e

- F.‘

@ @
P
Ll

P B R BRI R R N R R R ) B
F"\.- .F'-.

g

._rl‘ Ay
F

b= b 5

[
Pkt ek

Bl P b I
-
=

.F\..h

>
|
=

e e

D
=

|
_-I"\.. _I"\
kot

o

L}
L}

L]
[}

-m - -

LA Ln Ln

-

LN N vya wun un
Lid Lid Ll Lild Uil

o

=-.

o
g &

W Ln Wi wun

il Lk

J1 L A

L
o

Log Type: stderr
22704
Showing 4096 byies r:r‘ “?’*}?Dai total. Click

p“l_
INFO
INFO
INFO
INFO
NFO
INFO
INFO
INFO
INFO
INFO
TNFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

0 I Y ¥
Pd B2 B2

LN

L L L B g B

LN

WoLn
) S

(N F I,
SO S N

Log T\pe stdout

-1.1.8-cdh5.2.1-hadoop.
contalner
with

L
B =
LIE . I

1on_1417641624805_
varn.YarnAllocation ed
yarn.Execut D“Rurtab-
varn.ExecutorRunnabl
impl.ContainerManagem
yvarn.ApplicationMaster:
yvarn.YarnAllocationHandler: Lll Allocate
varn.Ya 2_lcuat1,|kcﬁ dler: Container
spark.MapOutputlrackerMasterfictor: MapOutputlr raActor Etﬂp:Ed!
ﬁetuD”H.Laﬂnec:iﬂﬁfarager: Selecter thread was “=“au“t
network.ConnectionManager: ConnectionManager stopped
storage.MemoryStore: MemoryStore cleared
r .BlockManager: BlockManager 5tc:ped
.BlockManagerMaster

ote.R “tPA:tﬂrRP;Jruvide*iﬁpmct:rchrm*ra or:
remote.RemoteActorRefProvider$RemotingTerminator:
Remoting: Remoting shut down

”ﬂﬂutc13cﬂﬂtﬁﬁntﬂlRE??PQTid

[t Succ

contalner
environment:
commands: L1
proxy : 1p-
to make up
containers,

reguest | » ANy, priority:

up EAE:.tuP

% -
E'.".En_u ‘._-f

= -
=Ll
—-—

SLor
r-..:.rr-r

T

gaemon snut

oting shut down.

|
5

=

“
=

1

it it
lJ

'
im
=

L5
LN
=k i

E

i

spark.SparkContext:

:.'51-“*1..'L.;:n:li:atic‘-""-r

imp:.;nqni:ier—

Ydarn.A Ff*l -+1gr

yarn Hﬂfili&'lﬁ"}u repﬁrter thread -

yvarn.ApplicationMaster: Apph = ceived & signal.
”pjli:"iﬁ““=f"“ ' ]

He =
I_I
L

EEDED

4

Ln

= 3 1
m D
i

e

(]

o i s 1]

im
H
™
=

o .
1
= 0

i = fF (
+ = -
(]

i [}

hearthest

yarn. a5t directory
varn.ApplicationV : roka sc stop +Puﬂ shutdown hook
ui.SparkUl: Stopped S /1p-1@-8-72-36,us-west-2

- - iy 2 x - " o -
spark.SparkContext: Spal ¥ dy stopped

down ;

interv

sparkStaging/application_

cCompuxce.

hsta:e: COMPLETE,
__spark__.Jar:%
[Java, hEP, - XX :0nQutC
2.compute.internal: 8841
lost containers

-ser

1488 memory
capability:

{memory:1488, vlores:

proceeding

uﬂregistereﬁ.

.
1 : 5868

1417641624005 0024

="

internal: 41825




-

- E Cluster1 - Spark - Cloude x | |7

History Server

'\

" ———

- C [ ec2-54-149-62-154.us-west-2. compute.amazonaws.com:.

Spark® History Server

Event Log Location: hdfs://ip-10-0-72-36_us-west-2 compute

Showing 1-2 of 2

App Na%eﬁ

2014/12/04 09:14:01

2014/12/04 09:07:-36

Completed
2014/12/04 09:21:19

2014/12/04 09:13:47

H

!

Duration
7.3 min

6.2 min

Spark User
ec2-user

ecZ-User

Last Updated

2014/12/04 09:21:20

2014/12/04 09:13:48

'\/\/\

A/ \/\4



PLUGGABLE RESOURCE MANAGEMENT

Local
Standalone

YARN

Mesos

Spark Central Master

[none]
Standalone Master

YARN App Master

Mesos Master

Who starts Executors? Tasks run in

Human being Executor

Worker JVM Executor

Node Manager Executor

Mesos Slave Executor




DEPLOYING AN APP TO THE CLUSTER

spark-submit provides a uniform interface for
submitting jobs across all cluster managers

bin/spark-submit --master spark://host:7077
--executor-memory 10g
| my script.py

Table 7-2. Possible values for the - -master flag in spark-submit

Value Explanation

| spark://host:port  Connect to a Spark Standalone master at the specified port. By default Spark Standalone master’s listen on
* port 7077 for submitted jobs.

< i - : ,_ :
ga#a mesos.// Connect to a Mesos cluster master at the specified port. By default Mesos masters listen on port 5050 for
B , tted i

S host:port submitted jobs.

yarn Indicates submission to YARN cluster. When running on YARN you'll need to export HADOOP_CONF_DIR
to point the location of your Hadoop configuration directory.

local Run in local mode with a single core.

local[N] Run in local mode with N cores.

local[*] Run in local mode and use as many cores as the machine has.

Source: Learning Spark



MEMORY AND PERSISTENCE

€ databricks



Recommended to use at most only 75% of a machine’s memory
for Spark

Minimum Executor heap size should be 8 GB

‘ [hcnat ’ Max Executor heap size depends... maybe 40 GB (watch GC)

Memory usage is greatly affected by storage level and
serialization format




V.




-

deserialized

RDD.cache() == RDD.persist(MEMORY ONLY)

most CPU-efficient option



Sp Q rK >[A0ES =tora gE Environment Executors ol par k shell A ap ication L

Storage

RDD Name Storage Level Cached Partitions Fraction Cached Size in Memory Size on Disk

0 Memory Deserialized 1x Replicated 2 100% 256 KB 006




RDD.persist(MEMORY ONLY SER)



L=,
)
N

[0
=
Q
7
L

-

.persist(MEMORY AND DISK)



.persist(MEMORY AND DISK SER)



—--—————--——-—-——--——--——-————-———-—_———q

F

JVM

h-‘--------------------------------

.persist(DISK ONLY)



JVM on Node Y

L®,
v

i~

(0

=

U

v

U

R

JVM on Node X

deserialized

ONLY 2

)

RDD.persist(MEMORY



T3
@
b
©
@
v
VU
g

.persist(MEMORY AND DISK 2)



|
|
|
|
|
|
[
|
|
|
[
4
|
I
|
i
|
[
|
|
|
4

serialized

.persist(OFF HEAP)



1
I
I
I
]
I
I
I
I
]
]
]
i
I
!
|
!
I
i
I
]
!
I
I
i
!
J
I
I
|
I
]
i
I
d

h__-__-______-__-

.
I
l
I
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
I
I
|
|
|

.unpersist()







~

It RDD fits In memory, choose MEMORY_ONLY

If not, use MEMORY_ONLY_SER w/ fast serialization library

Don't spill to disk unless functions that computed the datasets
are very expensive or they filter a large amount of data.
(recomputing may be as fast as reading from disk)

Use replicated storage levels sparingly and only if you want fast
fault recovery (maybe to serve requests from a web app)



\

Remember! »

Infermediate dafa is automatically persisted during shuffle operations



PySpark: stored objects will always be serialized with Pickle library, so it does
not matter whether you choose a serialized level.



Default Memory Allocation in Executor JVM

spark.storage.memoryFraction
User Programs

(remainder)

Shuffle memory

Cached RDDs




MEMORY

Spark uses memory for:

RDD Storage: when you call .persist() or .cache(). Spark will limit the amount of
memory used when caching to a certain fraction of the JVM's overall heap, set by
spark.storage.memoryFraction

Shuffle,and aggregation buffers: When performing shuffle operations, Spark will
create infermediate buffers for storing shuffle output data. These buffers are used to
store infermediate results of aggregations in addition to buffering data that is going
to be directly output as part of the shuffle.

User code: Spark executes arbitrary user code, so user functions can themselves
require substantial memory. For instance, if a user application allocates large arrays
or other objects, these will content for overall memory usage. User code has access
to everything “left” in the JVM heap after the space for RDD storage and shuftle
sforage are allocated.




DETERMINING MEMORY CONSUMPTION

1. Create an RDD

2. Put it into cache

logs will tell you how much memory each
partition is consuming, which you can
aggregate to get the total size of the RDD

3. Look at SparkContext logs
on the driver program or
Spark Ul

INFO BlockManagerMasterActor: Added rdd_©_1 in memory on mbk.local:50311 (size: 717.5 KB, free: 332.3 MB)




DATA SERIALIZATION

® databricks



Serialization is used when: SERlALIZAT‘ON

Transferring dafa over the nefwork

Spilling data to disk

Caching to memory serialized

Broadcasting variables




{’ff_"__ )
Java serialization VS. Kryo serialization
Uses Java's Ob jectOutputStream framework « Recommended serialization for production apps
Works with any class you create that implements « Use Kyro version 2 for speedy serialization (10x) and
java.io.Serializable more compactness
You can control the performance of serialization « Doesnotsupport all Serializable types

more closely by extending java.io.Externalizable
« Requires you to register the classes you'll use in
Flexible, but quite slow advance

Leads to large serialized formats for many classes « |f set, will be used for serializing shuffle data between
nodes and also serializing RDDs to disk

conf.set(“spark.serializer”, "org.apache.spark.serializer.KryoSerializer")



To reqgister your own custom classes with Kryo, use the
registerKryoClasses method:

val conf = new SparkConf().setMaster(...).setAppName(...)
conf.registerkKryoClasses(Seq(classOf|[MyClass1], classOf|[MyClass2]))
val sc = new SparkContext(conf)

- If your objects are large, you may need to increase
spark .kryoserializer.buffer.mb config property

- The default is 2, but this value needs to be large enough to
hold the largest object you will serialize.



o 1;_ o e W
L

:P::T’ TUNING FOR Sp Qr

High churn Low chumn



K

B TUNING FOR Spar

Cost of GC Is proportional to the # of
Java objects

(so use an array of Ints instead of a
LinkedList)

High churn
To measure GC impact:

—verbose:gc —XX:+PrintGCDetails —XX:+PrintGCTimeStamps



dfbmppadbiesiiabie baphedliefieediee

Parallel GC

-XX:+UseParallelGC
-XX:ParallelGCThreads=<#>

Uses multiple threads to
do young gen GC

Will default to Serial on
single core machines

Aka “throughput
collector”

Good for when a lot of
work Is heeded and
long pauses are
acceptable

Use cases: batch
processing

."l

Parallel Old GC

-XX:+UseParallelOldGC

Uses multiple threads
to do both young gen
and old gen GC

Also a mulfithreading
compacting collector

HotiSpot does
compaction only in
old gen

B . TUNING

CMS GC

-XX:+UseConcMarkSweepGC
-XX:ParallelCMSThreads=<#>

- Concurrent Mark
Sweep aka
“Concurrent low
pause collector”

- Tries to minimize
pauses due to GC by
doing most of the work
concurrently with
application threads

- Uses same algorithm
on young gen as
parallel collector

W

-  Use cases:

Gl GC

-XX:+UseG1GC

Garbage First is available
starting Java 7

Designed to be long term
replacement for CMS

s a parallel, concurrent
and incrementally

compacting low-pause
GC



JOBS = STAGES = TASKS

® databricks



.collect( )

Stage 1

Stage 2 %

Stage 3 %

Stage 5%

9!

Task #
Task #

1
2

Task #

3




SCHEDULING PROCESS

RDD Objects DAG Scheduler Task Scheduler EXecutor

sksef | Task threads
Block manager

Y o N
RAd1 . join(rdd2) -  Launches - Execute tasks

®hadoop © - 9roupBy(...) - Split graph into individual tasks
HES filter(..) stages of tasks

_ - Store and serve
- Reftry failed or blocks

JifelelelligleReNE

, - Submit each stage as
- Bulld operator DAG ready

Agnosticto Doesn't know
operators Stage about stages
failed




L INEAGE

filter(_.startsWith("ERROR"))

filter(_.contains(“HDFS")))

HDFS errors

map(_.split(\t')(3))
time fields

Figure 1: Lineage graph for the third query in our example.
Boxes represent RDDs and arrows represent transformations.

lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()




LINEAGE

“One of the challenges in providing RDDs as an abstraction is
choosing a representation for them that can frack lineage across a

wide range of fransformations.”

"The most inferesting question in designing this inferface is how 1o
represent dependencies between RDDs.”

“We found It both sufficient and useful to classity dependencies

INfo two types:

* narrow dependencies, where each partition of the parent RDD
Is used by at most one partition of the child RDD

« wide dependencies, where multiple child partitions may

depend on it.”




| INEAGE DEPENDENCIES

]

=) 2 W i | i am
REQUIINESS

shuffle

Narrow Dependencies: Wide Dependencies:

join with inputs

co-partitioned k3
join with inputs not

co-partitioned

Examples of narrow and wide dependencies.

Each box is an RDD, with partitions shown as shaded rectangles.



STAGES

J:F_l

[ ] = RDD V21981 —— 1 groupBy —

—
' F

B = cached partition
B - lost partition

~filter

i} = E — [——, =] = jr—1

=




LINEAGE

Dependencies: Narrow vs Wide

“This distinction is useful for two reasons:

I') Narrow dependencies dllow for pipelined execution on one cluster node,
which can compute all the parent partitions. For example, one can apply a
map followed by a filter on an element-by-element basis.

In contrast, wide dependencies require data from all parent partitions to be
available and to be shuffled across the nodes using a MapReduce-like

operation.

7| Recovery after a node failure is more efficient with a narrow dependency, as
only the lost parent parfitions need to be recomputed, and they can be
recomputed in parallel on different nodes. In confrast, in a lineage graph with
wide dependencies, a single falled node might cause the loss of some partition
from all the ancestors of an RDD, requiring a complete re-execution.”




To display the lineage of an RDD, Spark provides a toDebugString method:

scala> input.toDebugString

res85: String =
(2) data.text MappedRDD[292] at textFile at <console>:13

| data.text HadoopRDD[291] at textFile at <console>:13

scala> counts.toDebugString

res84: String =
(2) ShuffledRDD[296] at reduceByKey at <console>:17

+-(2) MappedRDD[295] at map at <console>:17
| FilteredRDD[294] at filter at <console>:15
| MappedRDD[293] at map at <console>:15
| data.text MappedRDD[292] at textFile at <console>:13
| data.text HadoopRDD[291] at textFile at <console>:13




How do you know it a shuffle will be called on a Transformatione

- repartition , join, cogroup, and any of the *By or *ByKey franstormations
can result in shuffles

- If you declare a numPartitions parameter, it’ll probably shuffle
- If a fransformation constructs a shuffledRDD, it’'ll probably shuffle

- combineByKey calls a shuffle (so do other fransformations like
groupByKey, which actually end up calling combineByKey)

Note that repartition just calls coalese w/ True:

def repartition(numPartitions: Int)(implicit
RDD.scalo ord: Ordering[T]«= null)? RDD[T] = {
coalesce(numPartitions, shuffle = true)

}



How do you know If a shuffle will be called on a Transtormatione

Transformations that use “numPartitions” like distinct will probbably shuffle:

def distinct(numPartitions: Int)(implicit ord: Ordering|[T] =
null): RDD[T] =

map(x => (x, null)).reduceByKey((x, y) => X,
numPartitions).map(_._1)



PERSERVES PARTITIONING

- An extra parameter you can pass a k/v transformation to let Spark know
that you will not be messing with the keys at all

- All operations that shuffle data over network will benefit from partitioning

- Operations that benefit from partitioning:
cogroup, groupWith, join, leftOuterJoin, rightOuterJoin, groupByKey,
reduceByKey, combineByKey, lookup,

hitps://dithub.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/rdd/RDD.scala#L302

(context, pid, iter) => 1

preservesPartitioning = true)




Support Developers Contact Us Downloads

cloudera

Search

COMMUNITY DOCUMENTATION DOWNLOADS TRAINING BLOGS

How-to: Tune Your Apache Spark Jobs (Part 1)

Hadoop & Big Data

Our Customers
Learn techniques for tuning your Apache Spark jobs for optimal efficiency.

FAQs Editor's note: Sandy presents on “Estimating Financial Risk with Spark” at Spark Sumn

id paae throuah the public APls. vou come across
Blog 1 page through the public AFIS, you come ac
fital for writing Spark programs
Micaton Is taKing so iong

| S - - - - i o |
arK at this ievel Is Vildl

i programs

| INk

=2 User

th the driver and the executors typically stic for the entire time the application 1S running

though dynamic resource allocation changes th

r -

un many concurrently throughout its lif

B oo oy e o - L o o L e e - - S
g e "l e T [] e & ™™ | -}
Ealls Ul 9SUdl i SldaliUaiiliile )

Spark driver

Source: Cloudera



Spark driver

job

Executor Executor

Task Task

Source: Cloudera



How many Stages will this code requiree

sc.textFile("someFile.txt").
map(mapFunc) .
flatMap( flatMapFunc).
filter(filterFunc).
count ()

Source: Cloudera



How many Stages will this DAG requiree

textkile [:}

Source: Cloudera




How many Stages will this DAG requiree

filter

Source: Cloudera




BROADCAST VARIABLES / \

+ +  +
&

ACCUMULATORS

® databricks






USE CASES:

« Broadcast variables — Send a large read-only lookup table to all the nodes, or
send a large feature vector in a ML algorithm to all nodes

purposes. Example: How many lines of the input file were blanke Or how many
corrupt records were In the Input datasete

‘I « Accumulators — count events that occur during job execution for debugging



Spark supports 2 types of shared variables:

Broadcast variables — allows your program to ef

ciently send a large, read-only

value to all the worker nodes for use in one or nr

ore Spark operations. Like

sending a large, read-only lookup table to all the nodes.

Accumulators — allows you to aggregate values

from worker nodes back 1o

the driver program. Can be used to count the # of errors seen in an RDD of
ines spread across 100s of nodes. Only the driver can access the value of an

accumulator, tasks cannot. For tasks, accumula

tors are write-only.



BROADCAST VARIABLES

Broadcast variables let programmer keep a read-
only variable cached on each machine rather than

shipping a copy of it with tasks

For example, to give every node a copy of a large
INput dataset etficiently

Spark also attempts to distribute broadcast variables
using efficient broadcast algorithms o reduce
communication cost



(<A3> BROADCAST VARIABLES

sScalqg:

val broadcastVar = sc.broadcast(Array(1l, 2, 3))

broadcastVar.value

Python:
broadcastVar = sc.broadcast(list(range(1l, 4)))

broadcastVar.value



rw.mosharaf.com/blog/2014

0g/2014/08/22/orchestra-is-the-default-broad: _ Search ﬂ' @ ;' "ﬁ‘

Mosharaf Chowdhury HOME  PUBLICATIONS  TALKS  TEACHING  ACADEMICS  BLOG

RECENT NEWS

ORCHESTRA IS THE DEFAULT BROADCAST
MECHANISM IN APACHE SPARK

T
=4 = = J

K ™A E ALY FE A s : -
J SEFPTEMBER 22 2014 - IS5HARAF 3 | FAVE ACOMMEM

With its recent release, Apache Spark has promoted Cornet—the BitTorrent-like broadcast mecha-
nism proposed in Orchestra (SIGCOMM’'11)—to become its default broadcast mechanism. It’s

great to see our research see the light of the real-world! Many thanks to Reynold and others for mak-
ing it happen.

MLIlib, the machine learning library of Spark, will enjoy the biggest boost from this change because of

the broadcast-heavy nature of many machine learning algorithms.




| INk

Managing Data Transfers in Computer Clusters with
Orchestra

Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael |. Jordan, lon Stoica
University of California, Berkeley

{mosharaf, matei, jima, jordan, istoica}@cs.berkeley.edu

ABSTRACT

Cluster computing applications hike MapReduce and Drvad transfer
massive amounis of data between their computation stages. These
transiers can have a signihcant impact on job performance, ac-
counting for more than 50% of job completion times. Despite this
impact, there has been relatively hittle work on optimazing the per-
lormance of these data transiers, with networking rescarchers tra-
dittonally focusing on per-llow tralfic management. We address
this limitaton by proposing a global management architecture and
a sel of algorithms that (1) improve the transfer times of common
communication patterns, such as broadcast and shullle, and (2) al-
low scheduling policies at the transfer level, such as prioritizing a
transier over other transfers. Using a prototype implementation, we
show that our solution improves broadeast completion times by up
o 4.5 % compared to the status quo in Hadoop, We also show thal
ransfer-level scheduling can reduce the completion time of high

priorty transfers by 1.7 x.

Categories and Subject Descriptors

C.2 [Computer-commumication networks|. [hisinbuted sysicms—
Clowd computing

General Terms
Algorithms, design, performance

Kevywords

Data-intensive applications, data transier, datacenter networks

1 Introduction

The last decade has scen a rapid growth of clustcr computing frame-
works to analyze the increasing amounis of data collected and gen:

ar Tl W sTal = i) 5 iy e Tt ] " i § L I T af L]

these clusters, operators mm o maximize the cluster utihzabon,
while accommodating a vaniety of applications, workloads, and
user requirements. To achieve these goals, several solutions have
recently been proposed to reduce job completion times [ 11,29, 43,
accommodate interactive workloads [29,43), and increase utiliza-
tion [26,29]. While in large part successiul, these solutions have
s0 lar been locusing on scheduling and managing computation and
storage resources, while mostly ignoring network resources.,

However, managing and oplimizing network activily is critical
for improving job performance. Indeed, Hadoop traces from Face-
book show that, on average, ransferring data between successive
stages accounts for 33% of the runnimg imes of jobs with reduce
phascs, Existing proposals for full bisection bandwidth networks
[21, 23, 24, 35] along with flow-level scheduling [10, 21] can im-
prove nelwork performance, bat they do not account for collective
behaviors of Hows due o the lack of job-level semantics.

In this paper, we arguc that to maximize job performance, we
need to optimize at the level of transfers, instead of individual
Mows, We define a rransfer as the set of all flows transporting
data between wo stages of a job, In Irameworks like MapReduce
and Dryad, a stage cannot complete (or sometimes even start) be-
fore it recerves all the data from the previous stage. Thus, the job
runming bme depends on the bme it takes W complete the entire
transier, rather than the duration ol individual llows comprising
it. To this end, we focus on two transfer patterns that oocur in
virtually all cluster computing frameworks and are responsible for
most of the network trafhic in these clusters: shaffle and broad-
cast, Shullle caplures the many-to-many communicalion paticm
between the map and reduce stages in MapReduce, and between
Dryad’s stages. Broadcast captures the one-to-many communica-
tion pattern employed by iterative optimization algorithms [45] as
well as fragment-replicate joins in Hadoop | 6]

¥ L W ) broadcast
\ oroadcast .. . rmovie vectors
/‘I param

[
L .
| |
i
H

' l cornpute gradients | ! | update user vectors |
N N et
U X/ | shufie | ..1*’1“‘{. Upcates
gradients ) broadoast

X _ (
Ill I.l '\l,’:‘- ", : L
A |/ ‘l ! / I user vactors

| |
. l sum & regulanz ‘up:'ate movie vectors |
% R — '.I ey L .

A\ “ ¢ _ collect new _ . / collect
SR e .. wAs =
i f \ param ~ .] updates

LY / '._
. o e

(a) Lomshc Regression (b} Collaborative Filtening

Figure 2: Per-iteration work flow diagrams for our motivating
machine learning applications. The circle represents the master
node and the boxes represent the set of worker nodes,

ITC

Fadr sharing
FIFO
Priority

TC (zhuffie) TC (brosdeazt) | | TC (broadeast)

HDFS HDFS
w— [rzs Tree
Cornet wp [ omnet

Hadoop shuffle
w55

I'f_

I"F
.
shuffle broadcast broadcast
Figure 4: Orchestra architecture. An Inter-Transfer Controller
(I'TC) manages Transfer Controllers ('TCs) for the active trans-
fers. Each TC can choose among multiple transfer mechanisms

depending on data size, number of nodes, and other [actors.
The I'TC performs inter-transfer scheduling.




.; ,# ?ﬁm’"y: OLD TECHNIQUE FOR BROADCAST

Uses HITP

3 | <

20 MB file




()
((A)) BITTORENT TECHNIQUE FOR BROADCAST (&%)

20 MB file




(0
«A)) 3ITTORENT TECHNIQUE FOR BROADCAST (8%

-

| /| '\.I
Bi- 25

I N\ ./‘ !
Bj Bj Bj

Source: Scott Martin



N
((A)) BITTORENT TECHNIQUE FOR BROADCAST @

-
1/ T\
-
[N L]
l-H-




_|_

/T

+

_|_

| ACCUMULATORS

Accumulators are variables that can only be “added” to through
an associative operation

Used o implement counters and sums, efficiently in parallel
Spark nhatively supports accumulators of numeric value types and

standard mutable collections, and programmers can extend
for new types

Only the driver program can read an accumulator’s value, not the
fasks



. | ‘l ACCUMULATORS

/T

+ 4+ +

seala:

val accum = sc.accumulator (0)
sc.parallelize (Array(l, 2, 3, 4)) .foreach(x => accum += Xx)

accum.wvalue

Python:

accum = sc.accumulator(0)
rdd = sc.parallelize([1, 2, 3, 4])
def f(x):

global accum

accum += X

rdd.foreach(f)

accum.value



Z @ {4 @

SCALA / PYTHON / JAVA /[ R

€ databricks



PySpark at a Glance

PROGRAMMING
LANGUAGE

Write Spark jobs

in Python Run Inferactive Supports C

jobs in the shell extensions



41 files
8,100 loc
6,300 comments




PYSPARK ARCHITECTURE

‘ daemon.pg \
MLIib, SQL, shuk\‘ g

{__.{ }
T
_ —

|

Spark Py4 ]

Context B
Controller Socket

|
spark E
Context |

Executor JVM

F(x) mp

\ / Driver JVM

| daemon.py \

é = ) F(x)

MLlib, SQL, shuffle
Executor JVM

Driver Machine Worker Machine



I3

Data is stored as Pickled objects in an RDD[Array[Bytel]]

RDD[Array] § h'

(100 KB — ITMB each picked object)



Choose Your Python Implementation

« JIT, so faster
less memory

« CFFl support o
................... PP Worker Machine

r-----—-———-—-—-—-——-—-———-———————-——-——

| ‘l $ PYSPARK_DRIVER_PYTHON=pypy PYSPARK_PYTHON=pypy ./bin/pyspark
OR

$ PYSPARK_DRIVER_PYTHON=pypy PYSPARK_PYTHON=pypy ./bin/spark-submit wordcount.py



The performance speed up will depend on work load (from 20% to 3000%).

Here are some benchmarks:

Word Count

Sort
Stafts

Here is the code used for benchmark:

rdd = sc.textFile("text")
def wordcount():

rdd. flatMap(lambda x:x.split('/"'))\

.map(lambda x:(x,1)).reduceByKey(lambda x,y:x+y).collectAsMap()

def sort():

rdd.sortBy(lambda x:x, 1).count()
def stats():

sc.parallelize(range(1024), 20).flatMap(lambda x: xrange(5024)).stats()

https://github.com/apache/spark/pull/2144



spark. python. worker. memory | Amount of memory to use per python work during aggregation, in the same

format as JVM memory strings (e.g. 512m, 2g). If the memory used during aggregation




D

NEXT GEN SHUFFLE

® databricks



100TB Daytona Sort Competition 2014 € databricks

Hadoop MR Spark Spark sorted the same data 3X faster

All the sorting took p

using Spark’s in-mem

NMore info:
NMore INTO:

|| 1 :E%:'_'I

——— TR SO http://databricks.com/blog/2014/11/05/spark-
Sort rate 1.42 TB/min }4 27 TB/min 4.27 TB/min officially-sets-a-new-record-in-large-scale-sorfing.htmi

Sortrate/node |0.67 GB/min 20.7 GB/min 22.5 GB/min

using 10X fewer machines
than Hadoop MR in 2013.

ace on disk (HDFS) without
ory cache!

hitp://sortbenchmark.org

Work by Databricks engineers: Reynold Xin, Parviz Deyhim, Xiangrui Meng, Ali Ghodsi, Matel Zaharia



ENTERPRISE |- : !

Startup Crunches 100 Terabytes of Data in a
Record 23 Minutes

BY KLINT FINLEY 101314 | 2:36 PM | PERMALINK

EiShare 1.1k My Tweet ‘789 g+1 7 m 565 | | Pinit

GIGA' M EVENTS  RESEARCH SIGN IN SUBSCRIBE m

Cloud Data Media Mobile Science & Energy Social & Web Podcasts

' Five tech products that
R designers have fallen in love
"n".’it.r"l

Databricks demolishes big data benchmark to prove
Spark is fast on disk, too

Oct. 10, 2014 - 1:49 PM PST

w .|
p Comment



WHY SORTING?

- Stresses “shuffle” which underpins everything from SQL to Mllib
- Sorting Is challenging b/c there is no reduction in data

- Sort 100 TB = 500 TB disk I/O and 200 TB neftwork

Engineering Investment in Spark:

- Sort-based shuffle (SPARK-2045)
- Netty native network transport (SPARK-2468)
- External shuffle service (SPARK-3796)

Clever Application level Techniques:

- GC and cache friendly memory layout
- Pipelining



TECHNIQUE USED FOR 100 TB SORT

EC2: 12.8xlarge
(206 workers)

Intel Xeon CPU E5 2670 @ 2.5 GHz w/ 32 cores

244 GB of RAM

8 x 800 GB SSD and RAID 0 setup formatted with /ext4

~9.5 Gbps (1.1 GBps) bandwidth between 2 random nodes

- Eachrecord: 100 bytes (10 byte key & 90 byte value)

- OpenlJDK 1.7
- HDEFES 2.4.1 w/ short circuit local reads enabled

- Apache Spark 1.2.0

32 slots per machine

6,592 slots total

-  Speculative Execution off
- Increased Locality Wait to infinite
- Compression turned off for input, output & network

- Used Unsafe to put all the data off-heap and managed
It manually (i.e. never triggered the GC)



groupByKey

sortByKey

reduceByKey



spark.shuffle.spill=false

(Affects reducer side and keeps all the data in memory)



EXTERNAL SHUFFLE SERVICE

-
L

- Must turn this on for dynamic allocation in YARN

- Worker JVM serves files
- Node Manager serves files




OLD TECHNIQUE FOR SERVING
MAP OUTPUT FILES

- Was slow because it had to copy the data 3 fimes

/ -. - ™
H . - it !
ﬁ -

Map output file
on local dir



@ NETTY NATIVE TRANSPORT &)

- Uses a technique called zero-copy

- Is a map-side optimization to serve data very
quickly o requesting reducers

Map output file
on local dir



- Entirely bounded
by |/O reading from
IDFS and writing out
locally sorted files

- Notice that map
has to keep 3 file
nandles open

- Mostly network bound




- Only one file handle

SORT BAS ED SHUFFLE @ 250,000+ reducers!

| ‘ = 3.6 GB
& gpgioop ol 3
| | | |

(28,000 unique blocks)
RF =2

!

RN

s

open at a time




SORT BAS ED SHUFFLE @ 250,000+ reducers!

- Swaves of maps
- 5 waves of reduces

(28,000 unique blocks)
RF =2

©
¥ hadoop ol 3
1 1
| e

o

MergeSorik




NETWORK TRANSPORT

unspecified Cluster Network last hour - Actual final run

- Fully saturafed
fthe 10 Gbit link

e
w
P
un
i

=
Sy

|

05:20 05:30 05:40

B In Mow: 28.9G Min:793.7k Avg:113.2G Max:221.7G
B Dut MNow: 28.9G Min:798.1k Avg:113.9G Max:223.60G

Sustaining 1.1GB/s/node during shuffle




0 spark/core/src/main/scal. X

- " r
. I 1T = ™ faTs

\—. - ot 4
1

GitHub

ache / spark

5 79e45c9323 + spark

github.com

Explore

|
el e e Tl o =
- | =

o
el e Nl Nl |

Features Enterprise

o (N .

i ﬂ-.-: r"\-
|

> Watch

shuffle

Blog

238

+ Star

2,884

Y Fork

2,520




| B =1 » m i
L B e | I| B |
| ! o B

28492942
95829324
2267176]
37584932
/3648274

John Galf 32

Winston Smith 4]
Tom Sawyer [
Carlos Hinojoso 33
Luis Rodriguez 34

New York
Oceania

Mississippi
Orlando
Orlando

SPARK SQL

® databricks

Sea Horse

ANt

Raccoon
Car
Dogs




"+
y¢tableau

JDBC/ODBC
A Simba




SchemaRDD

RDD of Row objects, each representing a record
Row objects = type + col. name of each

Stores data very efficiently by taking advantage of the schema

SchemaRDDs are also regular RDDs, so you can run
tfranstormations like map() or filter()

Allows new operations, like running. SQL on objects



hitps://databricks.com/blog/2015/02/17/intfroducing-dataframes-in-spark-for-large-scale-data-science.himl

% databl' IC]:(S PRODUCIT

” Introducing DataFrames in Spark for Large Scale Data
il L e . B

SLIENCE




INFERRING THE SCHEMA USING REFLECTION

from pyspark.sql import SQLContext, Row
sglContext = SQLContext(sc)

lines sc.textFile("examples/src/main/resources/people. txt")
parts = lines.map(lambda 1: l.split(", "))
people = parts.map(lambda p: Row(name=p[0], age=1nt(p[1])))

Only looks at first row

schemaPeople = sqlContext.inferSchema(people)

schemaPeople.registerTempTable("people™)

teenagers = sqlContext.sql("SELECT name FROM people WHERE age >

teenNames = teenagers.map(lambda p: "Name: =~ + p.name)
for teenName in teenNames.collect():

print teenName




PROGRAMMATICALLY .
SPECIFYING o = m G
THE

- |I- LL T = i = | N L L i pam = = 1 = = 3 — = 4 a Z - 5
line .Tex ("examples/src/main/resources/peog

( H EMA par lines.map(lambda |: l.split(","))
people = parts.map(lambda p: (p[0], p[l].strip()))

schemastring =

fields tructField(field_name, stringType(), True) for field_name in schemastring.split()]

scChem | ] /pe(Tields)

schemaPeople = sqglContext. applyschema(people, schema)

schemaPeople.registerTempTable("people™)

names = results.map(lambda p: "Name: " + p.name)
for name in names.collect():

print name




salContext. parquetFile( "people. parquet’)
! parg . peopile.parquet

ames = teenagers.map(lambda p:

for teenname in .collect():

print teenhame




Configuration of Parquet can be done using the setconf method on SQLContext or by running seT key=value commands using SQL.

Property Name

spark.

spark.

spark.

spark.

sql.parquet.binaryAsstring

sql.parquet. cacheMmetadata

sql.parquet. compression. codec

sql.parquet. 1 lterPushdown

convertMetastorerPrarquet

Default

false

Meaning

Some other Parquet-producing systems, in particular Impala and older versions of
Spark SQL, do not differentiate between binary data and strings when writing out the

Parquet schema. This flag tells Spark SQL to interpret binary data as a string to
provide compatibility with these systems.

Turns on caching of Parquet schema metadata. Can speed up querying of stafic data.

Sets the compression codec use when writing Parquet files. Acceptable values
include: uncompressed, snappy, 9zip, lzo

Turn on Parquet filter pushdown optimization. This feature i1s turned off by default
because of a known bug in Paruet 1.6.0rc3 (FARQUET-136). However, if your table
doesn't contain any nullable string or binary columns, it's still safe to turn this feature
on.

fo

VWhen set to false, Spark SQL will use the Hive SerDe for parquet tables instead of the

pullt in support.



SchemaRDD

class SchemaRDD extends RDD[Row] with SchemaRDDLike

O Accumulable An RDD of Row objects that has an associated schema. In addition to standard RDD functions, SchemaRDDs can be @:\EY& LT L ELT
AccumulableParam used in relational queries, as shown in the examples below

Accumulator Importing a SQLContext brings an implicit into scope that automatically converts a standard RDD whose elements are scala case classes

AccumulatorParam into a SchemaRDD. This conversion can also be done explicitly using the createSchemaRDD function on a SQLContext
Aggregator

ComplexFutureAction
Dependency

ExceptionFailure :
ExecutorLostFailure SQL Queries

FEtChFa'IE_'d A SchemaRDD can be registered as a table in the SQLContext that was used to create it. Once an RDD has been registered as a table, it
FutureAction can be used in the FROM clause of SQL statements
HashPartitioner

|nterruptib|e|teramr // One method for deftining the schema of an RDD 1s to make a case class with the desired column

JobExecutionStatus CA A gnd. Lypes L
Logging case class Record(key: Int, value: String)

NarrowDependency val sc: SparkContext // An existing spark context.

OneToOneDependency val sglContext = new SQLContext(sc)

Partition

Partitioner // Importing the S5QL context gives access to all the SQL functions and implicit conversions
amport sqlContext.

A SchemaRDD can also be created by loading data in from external sources. Examples are loading data from FParquet files by using the
parquetFile method on SQLContext and loading JSON datasets by using jsonFile and jsonRDD methods on SQLContext

©

RangeDependency

Rangqurtltlmner val rdd = sc.parallelize((l to 108).map(i => Record(i, s"val $i")))

Resubmitted '/ Any RDD containing case classes can be registered as a table. The schema of the table is
SerializableWritable // automatically inferred using scala reflection.

ShuffleDependency rdd.registerTempTable("records™)

SimpleFutureAction
SparkConf val results: SchemaRDD = sql("SELECT *

SparkContext

D-‘-..F-.-"I:r -

©

O
C_
t
C
C
<
C
C
C
¢
C_
C_
<
O
C
C_
t
C
C_
C
€
€
C_
€
<

) ©

Language Integrated Queries




- > 4 TwitterUtils.createStream(...)
V = _ .filter( .getText.contains("Spark"))
Ny .countByWindow(Seconds(5))

Spoﬁ(\z STREAMING

® databricks



TCP socketl

Kafka

Flume

HDFS

$3

Kinesis

Twitter

Complex algorithms can be expressed using:
- Spark transformations: map(), reduce(), join(), etc

- Scalable
- High-throughput
-  Fault-tolerant

-

-

Spoﬁ(?

STREAMING »

- MLlib + GraphX

= SQL

HDFS l

Cossonaro I

Doshboordsl

Databases ]




/f”/; Bafch %\ Redlfime T
) \

) \
Spqu \ —

(ﬁ'hadao
Map HEdU‘-'-'E-' STREAMING
\ One unified AP ,/ /

\\ \ /// //




Spoﬁ(\z

STREAMING

Tathagata Das (TD)

Lead developer of Spark Streaming + Committer
on Apache Spark core

Helped re-write Spark Core internals in 2012 to
make it 10x faster to support Streaming use cases

On leave from UC Berkeley PhD program

Ex: Infern @ Amazon, Infern @ Conviva, Research
Assistant @ Microsoft Research India

1 guy; does not scale

Scales to 100s of nodes
Batch sizes as small at half a second
Processing latency as low as 1 second

Exactly-once semantics no matter what fails



Page views

—_—— g
—

US E CAS ES (live statistics)

N

J

Katka for buffering

<

.

Spa
STREAMING

-
ik

/

Spark for processing



Smart meter readings

<

Live weather data

US E CAS ES (Anomaly Detection)

e

Join 2 live data
sources

/

Spa

\STREAMING

3 e
ik

L/




Input data stream

)

Bafches every X seconds

-

-~

Spa
STREAMING

i
ik

v

/1]

.-

s

.

\Yolo
CORE

X
7S

¥

Batches of
processed data

OOOc)




DSTREAM

(Discretized Stream)
Batch interval = 5 seconds

® ® -
INput

DStream I I
- = e |Block #1| | Block #2| Block #3| S— Block #1 | | Block #2| | Block #3

k. v \, W,
NBIDECRESS RDD @ T=+5

One RDD is created every 5 seconds



TRANSFORMING DSTREAMS

wordsRDD

-
4 N
c— e IBIock #1 Block #2 Block L3|
. J
A
@5566 ! Materialize!
- eo» a» ea» e e= |Pqrt. #] Part. #2 lPor‘r. #3
linesRDD ;
flatMap() | &1’
\ 4 ¥)
- eo» eo» ea» e e | Pqort #] Part. #2 Part. #

3 -———————)

linesDStream
4 i

= L .E),

A J/

linesDStream

.
F
.

wordsDStream




5

from pyspark import SparkContext
from pyspark.streaming import StreamingContext

# Create a local StreamingContext with two working thread and batch interval of 1 second
sc = SparkContext("local[2]", "NetworkWordCount")

ssc = StreamingContext(sc, 5) linesStream

# Create a DStream that will connect to hostname:port, like localhost:9999 lr?%
linesDStream = ssc.socketTextStream("localhost", 9999)
wordsStream
# Split each line into words l*;x;
wordsDStream = linesDStream.flatMap(lambda line: line.split(" ")) |
pairsStream
# Count each word in each batch 1léé?
pairsDStream = wordsDStream.map(lambda word: (word, 1)) i
dCountsDSt — 1 rsDSt .reduceByK lambd :
wordCountsDStream = pairsDStream.reduceByKey(lambda x, y: X + Vy) oAb ohnteStTaaT
# Print the first ten elements of each RDD generated in this DStream to the console
wordCountsDStream.pprint()

ssc.start() # Start the computation
ssc.awaitTermination() # Wait for the computation to terminate



$ nc -1k 9999

hello world

]
|
|
]
I
: O “
m O m
O m
_ :
D m
2 m
] —i .
" m "
|
S } “
A 2 m
i VJ N .
5 ]
N m 2 : m
-. [ |
= o “ .rm < m
O - : "
- 5 : .
— 3 "
= 3 : "
VN
O o m m
]
- £ o .
T mw .
“ m & 0O O m
| ——
- — t _- __I_ -
. S | e “
S £ 1 00 |
I
“ R = = = .
- | e S "
: -~ 2
e b
| T )
llllll ]
llllll ]
lllllll ]
llllll ]
llllll ]
-l |
__ |
— |
— I
- [
_ |
- I
_ ]
— |
- I
- |
— ]
- ]
_ [
_ |
- ]
_ [
_ |
O m m
C _ .
.M " "
~ | m
— |
_ I
— |
- [
1
i
]
]
]
]



Batch interval = 600 ms




Batch interval = 600 ms

200 ms later




Batch interval = 600 ms

200 ms later

[ v |



Batch interval = 600 ms




Batch interval = 600 ms

[ v |

Ex
OO

" e T W
P N

DT

o




&

indexTweetslive-5 = § 1

C locathost

Spark’

Streaming

Started at: Wed Oct 22 06:11:53 PDT 2014

Time since start: 27 minutes 20 seconds
Network receivers., 1

Batch interval: 1 second

Processed balches: 1b4]

Waiting batches: O

Statistics over last 100 processed batches

Receiver Statistics

Receiver Status Location

witlerHecener-o ACTIVE localhost

Batch Processing Statistics

Metric Last batch Minbmum
31 ms 5 Ms
Scheduling Delay Ums

Total Delay 31 ms

Records in last batch  Minimum rate
[2014/10v22 06:39:14] [records/sec)

22th percentile

Median

H6 MS

Median rate Maximum rate
[recordsisec] [recordsisec]

151

5th percentiie

iL
ol

Last Error

Maximum

2 seconds 289 ms

F =
l.'i_q Frias

o Bt et LI

T 1T ————
£ Sl '..1_'.- f'ﬂ 4 MS




Batch interval = 600 ms

2 Input DStreams

Internal ,
Threads OH..

(




Batch interval = 600 ms




Batch interval = 600 ms




Batch interval = 600 ms

In
Th

ternal g
reads -
o O




(]
BASIC

- File systems
- Socket Connections
- Akka Actors

Sources directly available
IN StreamingContext API

¢
ADVANCED

- Kafka
- Flume
- Twitter

Requires linking against
exira dependencies

(]
CUSTOM

-  Anywhere

Requires implementing
user-defined receiver



< C' | & https://spark.apache.org/docs/latest/strean

Spgrk i Overview Frogramming Guides - AP| Docs ~ Deploying ~ More-
il oL

Spark Streaming + Flume Integration Guide

lume i1s a distributed, reliable, and available service for efficiently collecting, aggregating, and moving
large amounts of log data. Here we explain how to configure Flume and Spark Streaming to receive data from

Flume. There are two approaches to this.

Approach 1: Flume-style Push-based Approach

Flume is designed to push data between Flume agents. In this approach, Spark Streaming essentially sets up a
receiver that acts an Avro agent for Flume, to which Flume can push the data. Here are the configuration steps
General Requirements

Choose a machine in your cluster such that

e \When yvour Flume + Spark Streaming application 1s launched, one of the Spark workers must run on that
machine.

Flume can be configured to push data to a port on that machine

Due to the push model, the streaming application needs to be up, with the receiver scheduled and listening on the

chosen port, for Flume to be able push data.

Configuring Flume

Configure Flume agent to send data to an Avro sink by having the following in the configuration file




\ C' | & https://spark.apache.org/docs/latest/strearr

SprK : 90 Overview Programming Guides AP| Docs~ Deploying ~ NMore~
LU

Spark Streaming + Kafka Integration Guide

= 1<

afka is publish-subscribe messaging rethought as a distributed, partitioned, replicated commit log service

Here we explain how to configure Spark Streaming to receive data from Katka.

1. Linking: In your SBT/Maven projrect definition, link your streaming application against the following artifact (see
Linking section in the main programming guide for further information).

e’

groupId = org. apache. spark
artifactId = spark-streaming-kafka_2.10
version = 1.2.0

2. Programming: In the streaming application code, import kafkautils and create input DStream as follows.

Scala Java

import org.apache.spark.streaming. kafka. _




TRANSFORMATIONS ON DSTREAMS

map( /)

reduce( fix) )
union ( otherStream )
updateStateByKey(:J;)*
flatMap( Jix))
‘jOin(DthEI‘StI‘EEI‘HI [numTasks]) fin lter( | | X )
(f_",'(:)g:["c)l_a|[_’)(=::rtherStrE-arn»r [numTasks] )
repartition(numPartitions) tfang form( Vi )
~ ROD count ()

IEdUCEAByKey( (X) ; [ﬂumTasks])

countByValue()



TRANSFORMATIONS ON DSTREAMS

' — (word, 1)
K PEtLS (cat, 1)

updateStateByKey( fix)) : allows you to maintain arbitrary state while
continuously updating it with new information.

To use: To mainftain a running count of each word seen
: INn a text data stream (here running count is an
integer type of state):

1) Define the state

(an arbitrary data type) Eis' def updateFunction(newValues, runningCount):
1f runningCount is None:
. _ runningCount = ©
2) Define the state update function return sum(newValues, runningCount) # add the

(specify with a function how to update the state using the # new values with the previous running count
previous state and new values from the input stream) # to get the new count

runningCounts = pairs.updateStateByKey(updateFunction)

* Requires a checkpoint directory to be
configured



TRANSFORMATIONS ON DSTREAMS

RDD
transform( 7)) . can be used to apply any RDD operation that
e IS not exposed In the DStream API.
:é spamInfoRDD = sc.pickleFile(...) # RDD containing spam information
# joln data stream with spam information to do data cleaning
cleanedDStream = wordCounts.transform(lambda rdd:
For eXCImp|e rdd. join(spamInfoRDD). filter(...))
- Functionality to join every batch in a R
data stream with another dataset is not
directly exposed in the DStream API. MLIib GraphX

- If you want to do real-time data
cleaning by joining the Input dafa
stream with pre-computed spam
InNformation and then filtering based on |f.



Window Lengfj’? 3 fime units WINDOW OPERATIONS

Sliding Interval: 2 time units _ _ .
fime 1 fime 2 time 3 fime 4 fime 5 time 6

* Both of these must be multiples of the
batch intferval of the source DSTream @ @ @ @ @ @

--—-—-—-—-----—_---—-—--—__h

Oriainal f { | -
d - e 'ﬂ RDD] = RDD 2 + Batch 3 -I Batich 4 | 4« Batch 5 Batch 6 | «== —>
DStream | I

- I S T D T S S S S e T SN S T D e e S S S T G I e e e

v !

W|ndowecl . i_lRDD] L Part. 2 .| Part. 3 L Part. 4 | Par. 5 I_ -_— = = —>

DStream

RDD @ (® 3 RDD @ (®© 5

# Reduce last 30 seconds of data, every 10 seconds
windowedWordCounts = pairs.reduceByKeyAndWindow(lambda x, y: x + y, lambda x, y: x — vy, 30, 10)



COMMON WINDOW OPERATIONS

window ( windowLength , slidelnterval )

countByValueAndWindow (windowLength, slidelnterval, [numTasks])

CountByw:i.ﬂdOW ( windowLength, slidelnterval ) AP| DocCS
J : - DStream
: g - PairbstreamFunctions
reduceByWi ﬂdOW( j"f':__,__»e , WwindowLength, slidelnterual)
ﬁ} - JavaDStream
«—_ - JavaPairDStream
TEdUCEByKeyAndWi ﬂdOW( ”f;-'ﬁ_;,..,; | , windowLength, slidelnterval, [numTasks] ) . DStream

reduceByKeyAndWindow( fix) , \(¥) , windowLength, slidelnterval, [numTasks] )



OUTPUT OPERATIONS ON DSTREAMS

pEInE()
foreachRDD( 11y )

saveAsTextFile(prefix, [suffix])

saveAsOb jectFiles (prefix, [suffix])

saveAsHadoopFiles(prefix, [suffix])



llllllll
IIIIIIIII

llllllll
iiiiiii
iiiiiiii

-----
----

'-w-

> =
N

.

€ databricks



