Top 5 Mistakes when writing

Spark applications

Mark Grover | @mark_grover | Software Engineer |
Ted Malaska | @TedMalaska | Principal Solutions AT
tiny.cloudera.com/spark-mistakes

SPARK SUMMIT EAST

FEBRUARY 16-18, 2016 NEW YORK CITY

About the book

* (@hadooparchbook
 hadooparchitecturebook.com
» github.com/hadooparchitecturebook

» slideshare.com/hadooparchbook Application
Architectures

DESIGNING REAL WORLD BIG DATA APPLICATIONS

ey TR R DR
A e I]
L rj'ruf"‘l'. e ':'.'l-i'llli"'
gl T kg

u“:'*:,‘i:ﬁ ity
T f‘__'_r: .ﬂl::r I Li':";".lll.
- Ry ._rr. |I| ll :

Mark Grover, Ted Malaska,
Jonathan Seidman & Gwen Shapira

a SPARK SUMMIT EAST
summit 2016

Mistakes people make

when using Spark

SPARK SUMMIT EAST

FEBRUARY 16-18, 2016 NEW YORK CITY

Mistakes peoeple we made

when using Spark

SPARK SUMMIT EAST

FEBRUARY 16-18, 2016 NEW YORK CITY

Mistake # 1

SPARK SUMMIT EAST

FEBRUARY 16-18, 2016 NEW YORK CITY

Executors, cores, memory !?!
R QN Qg gy S g

* 6 Nodes
« 16 cores each
« 64 GB of RAM each

Decisions, decisions, decisions

e 16 cores each D

* 64 GB of RAM -

* Number of executors (--num-executors)
» Cores for each executor (--executor-cores)

 Memory for each executor (--executor-
memory)

* 6 nodes

Spark Architecture recap

Worker Node

Executor I Cache

Driver ngran/j | Task || Task |
SparkContext «——— Cluster Manager
Worker Node

_—. Executor | Ccache
Task Il Task

i’l SPARK SUMMIT EAST
S%mlt | 2016

Answer #1 — Most granular

 Have smallest sized executors as possible

* 1 core each

» Total of 16 x 6 = 96 cores

* 96 executors

* 64/16 = 4 GB per executor (per node)

MMMMM

Answer #1 — Most granular

Have smallest sized executors as possible
1 core each
Total of 16 x 6 =96
06 exécutors

64/16 = 4 GB per executor (per node)

QIES

Why?

* Not using benefits of running multiple
tasks in same JVM

MMMMM

Answer #2 — Least granular

e b executors
* 64 GB memory each
e 10 cores each

Answer #2 — Least granular

" 6 execu N P
16 cores each

Why?

* Need to leave some memory overhead for
OS/Hadoop daemons

MMMMMM

Answer #3 — with overhead

e O executors

* 63 GB memory each
e 15 cores each

SSSSSSSSSSSSSSS
2016

Answer #3 — with overhead

. 6 execu . o
» 15 cores each”

\ =

Spark on YARN — Memory usage

yarn.nodemanager.resource.memory-mb

Executor Container

spark.yam. spark.executor.memory
s .
mnzt;%uvm spark.shuffle. spark.storage
memoryFraction memoryFraction

« --executor-memory controls the heap size
 Need some overhead (controlled by
spark.yarn.executor.memory.overhead)for off heap memory
* Defaultis max(384MB, .07 * spark.executor.memory)

SPARK SUMMIT EAST
2016

YARN AM needs a core: Client
mode

YARN Resource
Manager
YARN Container
Client application Qesource 3
E]
- .
§ ¢
2
i
]
|
|
1
|
1
1
YARN NodeManager |
YARN Contalner YARN Container

§ ; SPARK SUMMIT EAST
Spﬁ - 2016

==k
=i T
=B s]
B L e
= =E s -:"GS_::._.?.-.:: e

YARN AM needs a core: Cluster
mode

YARN Resource
Manager
YARN Container
1
Client Resourct
|
Bl 3
LY v
i3
g
]
|
| L
|
J |
|
N NodeManager
YARN Container
=i - F [
Tl -

SPARK SUMMIT EAST
2016

HDFS Throughput

» 15 cores per executor can lead to bad
HDFS I/O throughput.

» Best Is to keep under 5 cores per executor

Calculations

e D cores per executor
— For max HDFS throughput

» Clusterhas 6 * 15 = 90 cores In total (after taking out
Hadoop/Yarn daemon cores)

e 90 cores / 5 cores/executor= 18 executors
1 executorfor AM => 17 executors

« Each node has 3 executors

» 63 GB/3=21GB, 21 x(1-0.07) ~ 19 GB (counting off
heap overhead)

summit

Correct answer

e 17 executors

* 19 GB memory each
e 5 cores each

* Not etched in stone

SSSSSSSSSSSSSSS
2016

Read more

* From a great blog post on this topic by
Sandy Ryza:

http://blog.cloudera.com/blog/2015/03/how-
to-tune-your-apache-spark-jobs-part-2/

MMMMM

Mistake # 2

SPARK SUMMIT EAST

FEBRUARY 16-18, 2016 NEW YORK CITY

sﬁslnqmut

Application failure

15/04/16 14:13:03 WARN scheduler.TaskSetManager: Lost task 19.0 in
stage 6.0 (TID 120, 10.215.149.47) :
jJava.lang.IllegalArgumentException: Size exceeds Integer.MAX VALUE

at sun.nio.ch.FileChannelImpl.map (F1leChannellImpl.java:828) at
org.apache.spark.storage.DiskStore.getBytes (DiskStore.scala:123) at
org.apache.spark.storage.DiskStore.getBytes (DiskStore.scala:132) at
org.apache.spark.storage.BlockManager.doGetLocal (BLockManager.scala: ol
/) at

org.apache.spark.storage.BlockManager.getlLocal (BlockManager.scala:432)
at org.apache.spark.storage.BlockManager.get (BlockManager.scala:618)
at

org.apache.spark.CacheManager.putInBlockManager (CacheManager.scala:146
) at org.apache.spark.CacheManager.getOrCompute (CacheManager.scala:70)

SPARK SUMMIT EAST
2016

Why?

* No Spark shuffle block can be greater than
2 GB

Ok, what's a shuffle block again®

* |In MapReduce terminology, a Mapper-
Reducer pair — the file from local disk that
the reducers read from local disk in
MapReduce.

MMMMM

In other words

4 Staqg L b Each yellow arrow
' in this diagram
represents a

shuffle block.

SPARK SUMMIT EAST
| 2016

Wait! What!?! This is Big Data stuff,
No?

* Yeah! Nope!

« Spark uses ByteBuffer as abstraction

for storing blocks
val buf = ByteBuffer.allocate(length.tolnt)

* ByteBufferislimited by Integer.MAX SIZE (2 GB)!

Once again

* No Spark shuffle block can be greater than
2 GB

Spark SQL

» Especially problematic for Spark SQL

» Default number of partitions to use when
doing shuffles is 200

— This low number of partitions leads to high
shuffle block size

MMMMM

Umm, ok, so what can | do?

1. Increase the number of partitions
— Thereby, reducing the average partition size

2. Get rid of skew In your data
— More on that later

Umm, how exactly?

* In Spark SQL, increase the value of
spark.sqgl.shuffle.partitions

* |n regular Spark applications, use
rdd.repartition () Or

rdd.coalesce ()

But, how many partitions should |

have?

* Rule of thumb is around 128 MB per
partition

But!

» Spark uses a different data structure for
bookkeeping during shuffles, when the

number of partitions is less than 2000, vs.
more than 2000.

MMMMMMMMMMM

Don’t believe me?

* |n MapStatus.scala

def apply(loc: BlockManagerld, uncompressedsSizes:
Array[Long]): MapStatus = {
iIf (uncompressedSizes.length > 2000) {
HighlyCompressedMapStatus(loc,
uncompressedSizes)

} else
new CompressedMapStatus(loc, uncompressedSizes)

MMMMMM

Ok, so what are you saying?

* |If your number of partitions is less than
2000, but close enough to Iit, bump that
number up to be slightly higher than 2000.

Can you summarize, please?

* Don't have too big partitions
— Your job will fail due to 2 GB limit
 Don't have too few partitions

— Your job will be slow, not making using of
parallelism

* Rule of thumb: ~128 MB per partition
o |f #partitions < 2000, but close, bump to just > 2000

MMMMMM

Mistake # 3

SPARK SUMMIT EAST

FEBRUARY 16-18, 2016 NEW YORK CITY

Slow jobs on Join/Shuffle

 Your dataset takes 20 seconds to run over
with a map job, but take 4 hours when
joined or shuffled. What wrong?

Skew and Cartesian

SSSSSSSSSSSSSSS
2016

Mistake - Skew

The Holy Grall of Distributed Systems

Normal { Single Thread

Single Thread

Single Thread

Distributed

|
|
Single Thread ‘
|

Single Thread

‘ Single Thread

‘ Single Thread

SPARK SUMMIT EAST
s&%nﬂt 2016

Mistake - Skew

What about Skew, because that is a thing

Normal { Single Thread

Distributed

SPARK SUMMIT EAST
sPn;iz 2016

summit

Mistake — Skew : Answers
» Salting
* |solation Salting
* |solation Map Joins

Mistake — Skew : Salting

* Normal Key: "Foo”

» Salted Key: “Foo™ +
random.nextint(saltFactor)

SSSSSSSSSSSSSSS
2016

Managing Parallelism

Distribute By Concat Records

|
|
Distribute By Concat
l Remrdsl-

12345678 9101112131415161718192021222324252627282930

SPARK SUMMIT EAST
2016

s

_-"
y
'\._-.

= :
o= g
- -:
s —_—
= e

£ £
8 8
8 B

g
8

Records per Reducer
g g 8§
3 B
a a

g
:
8

VlIStz

Mod2 Records per Reducer

W m

12345678 910111213124

e .."';-. f g
= oy i
e - e e
e - y e e

®10

=11

Mod 8 Records “1
-
200,000.00 _i
180,000.00 =
; 160,000.00 .l
i 140,000.00 .
e 120,000.00 b
§ 100,000.00 "
g B0,000.00 “8
! 60,000.00 -9
40,000.00 " 10
20,000.00 81i
.12

SPARK SUMMIT EAST

2016

Add Example Slide

Mistake — Skew : Salting

» [Two Stage Aggregation
— Stage one to do operations on the salted keys

— Stage two to do operation access unsalted
kKey results

Data Source Map Reduce Map Convert Reduce Results
Convert to By Salted Key results to By Key
> Salted Key & Value = — Key & Value — =
Tuple Tuple

SSSSS

Mistake — Skew : Isolated Salting

» Second Stage only required for Isolated
Keys

Data Source Map Reduce Filter Isolated Union to
Convertto By Key & Keys Results
Key & Value Salted Key From Salted
> |solate Keyand > = Keys
convert to
Salted Key &
Value
Tuple
Map Convert Reduce
results to By Key
Key & Value
Tuple =
spu;ﬁz SPARK SUMMIT EAST

summit 2016

Mistake — Skew : Isolated Map Join

 Filter Out Isolated Keys and use Map
Join/Aggregate on those

« And normal reduce on the rest of the data

* This can remove a large amount of data being
S h U fﬂ e d By Egr?‘::ﬁ(ey

Data Source Filter Normal Union to

Map Join
Forlsolated

MMMMMM

Cartesian Join

Shuffle Tmp 1

Map Task

Shuffle Tmp 2

Managing Parallelism

ReduceT ask

Amount
of Data

Shuffle Tmp 3

Shuffle Tmp 4

Shuffle Tmp 1

ReduceT ask

Map Task

Shuffle Tmp 2

Shuffle Tmp 3

Shuffle Tmp 4

ReduceT ask

Shuffle Tmp 1

Map Task

Shuffle Tmp 2

SPARK SUMMIT EAST
2016

Shuffle Tmp 3

ReduceT ask

Shuffle Tmp 4

E

Amount of Data

10x
100x
1000x
10000x
100000x
1000000x
Or more

Managing Parallelism

 To fight Cartesian Join
— Nested Structures
— Windowing
— SKip Steps

Mistake # 4

SPARK SUMMIT EAST

FEBRUARY 16-18, 2016 NEW YORK CITY

Out of luck?

* Do you every run out of memory?
* Do you every have more then 20 stages?
* |s your driver doing a lot of work?

MMMMM

Mistake — DAG Management

» Shuffles are to be avoided

e ReduceByKey over GroupByKey
* TreeReduce over Reduce

» Use Complex Types

Q
mmmmm

Mistake — DAG Management:

| Shuffles
* Map Side Reducing if possible

* Think about partitioning/bucketing ahead of
time

* Do as much as possible with a single
Shuffle

» Only send what you have to send

* Avoid Skew and Cartesians

MMMMMM

ReduceByKey over GroupByKey

 ReduceByKey can do almost anything that
GroupByKey can do
* Aggregations
 \Windowing
* Use memory
* But you have more control

» ReduceByKey has a fixed limit of Memory
requirements

» GroupByKey is unbound and dependent of the

A7 taw MIT EAST
Seark, dﬂ

lTreeReduce over Reduce

* TreeReduce & Reduce returns a result to the driver
* TreeReduce does more work on the executors
* WWhere Reduce bring everything back to the driver

Partition Partition
25%

Partition Partition

Driver 25% Driver
0

Partition Ll Partition -
25%

Partition Partition
25%

SPARK SUMMIT EAST
Spuﬁz“(2016

summit

Complex Types

* Top N List
» Multiple types of Aggregations
» Windowing operations

* All In one pass

Complex Types

« Think outside of the box use objects to reduce by
* (Make something simple)

How-to: Do Data Quality Checks using
Apache Spark DataFrames

July 9,2015 | By Ted Malaska | 3 Comments

Categories: How-to Spark

Apache Spark’s ability to support data quality checks via DataFrames is progressing
rapidly. This post explains the state of the art and future possibilities.

Apache Hadoop and Apache Spark make Big Data accessible and usable so we can easily
find value, but that data has to be correct, first. This post will focus on this problem and

' SPARK SUMMIT E
Spﬁ'ﬁ 206

Mistake # 5

SPARK SUMMIT EAST

FEBRUARY 16-18, 2016 NEW YORK CITY

Ever seen this?

Exception in thread "main” java.lang.NoSuchMethodError:
com.google.common.hash.HashFunction.hashint(l)Lcom/google/common/hash/HashCode;

at org.apache.spark.util.collection.OpenHashSet.org
$apache$spark$utilbcollectiondOpenHashSet$ $hashcode(OpenHashSet.scala: 261)

at
org.apache.spark.util.collection.OpenHashSetSmcl$sp.getP osImcl$sp(OpenHashSet.scala: 165)

at
org.apache.spark.util.collection.OpenHashSet$ mcl$sp.contains$mcl$sp(OpenHashSet.scala: 102)

at
org.apache.spark.util.SizeEstimator$$anonfun$visitArray$2.apply$mcVI$sp(SizeEstimator.scala:214)

at scala.collection.immutable.Range.foreachmVcsp(Range.scala:141)

at
org.apache.spark.util.SizeEstimator$.visitArray (SizeEstimator.scala: 210)

at.......

SPARK SUMMIT EAST
S‘?u%’ﬁ 2016

But!

» | already included guava in my app's
maven dependencies?

MMMMMM

An!

* My guava version doesn't match with
Spark’'s guava version!

MMMMMM

Shading

<plugin>
<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-shade-plugin</artifactld>
<version>2.2</version>

<relocations>
<relocation>
<pattern>com.google.protobuf</pattern>
<shadedPattern>com.company.my.protobuf</shadedPattern>

</relocation>
</relocations>

MMMMMM

'-". 111
AR |
Y 'llllll'll'

SPARK SUMMIT EAST

FEBRUARY 16-18, 2016 NEW YORK CITY

5 Mistakes

* Size up your executors right

» 2 GB limit on Spark shuffle blocks

* Evil thing about skew and cartesians

 Learn to manage your DAG, yo!

* Do shady stuff, don't let classpath leaks
mess you up

THANK YOU.

tiny.cloudera.com/spark-mistakes

Mark Grover | @mark _grover
Ted Malaska | @ TedMalaska

SPARK SUMMIT EAST

FEBRUARY 16-18, 2016 NEW YORK CITY

