—

Tuning and Debugging in
Apache Spark

Patrick Wendell @pwende
February 20, 2015

€databricks

About Me

Apache Spark committer and PMC, release manager
Worked on Spark at UC Berkeley when the project started

Today, managing Spark efforts at Databricks

€databricks

About Databricks

Founded by creators of Spark in 2013
Donated Spark to ASF and remain largest contributor

End-to-End hosted service: Databricks Cloud

€databricks

Today's Talk

Help you understand and debug Spark programs

Assumes you know Spark core API concepts, focused on
internals

€databricks

Spark’s Execution Model

€databricks

€databricks

The key to tuning
Spark apps is a
sound grasp of
Spark’s internal

mechanisms.

Key Question

How does a user program get translated into units of
physical execution: jobs, stages, and tasks:

[root@ip-172-31-11-254 ~1# /opt/cloudera/parcels/SPARK/pyspark

welcome to
) T - Pl
NN AN . il S
Z 1AL TN version 0.8.0
[

Using Python version 2.6.6 (r266:84292, Sep 11 2012 98:34:23)
Spark context avaiable as sc.

333 file = sc.textFile("hafs://ip-172-31-11-254, us-west-2, compute. internal:8020/user/
hafs/aca: H oy

>>> file.count()

856760
>>> file.filter(lanbda line: "Holiday" in line).count(}

€databricks

Wode: FIFO
Active Stages: 0
Completed Stages: 12
Failed Stages: 0
Active Stages (0)
Stage Id Description ‘Submitted Duration Tasks: Succeeded/Total Shuffle Read Shutfle Write
Completed Stages (12)
Stageld Description Submitted Duration Tasks: Succeeded/Total ShuffieRead Shuffle Write
10 ‘sslect count(’) from pokes_cache 2014/04/05 20:06:25 595ms]
rundob at FileSinkOperator scala:187
1 ‘select count(’) from pokes_cacha 2014/04/05 20:06:25 4TEms —— 2308
mapPartitionsWithindex at Operator.scala:333
8 ‘sslect count(’) from pokes 2014/04/05 20:06:22 313ms]
rundab at FlleSinkOperator.scaia:187
9 ‘select countl) from pokes 2014/04/05 20:06:21 618 ms e — 2008
mapPartitionsWithindex at Operator.scala:d3s
3 ‘sefect countf’) from pokes_cache 2014/04/05 20:06:15 209ms JI———
runJob &t FileSinkOperator scaia:187
7 sefect countf’) from pokes_cache 2014/04/05 20:06:14 346 ms e —— 2808
mapPartitionsWithindex at Operator.scaia:333
4 ‘select count(’) from pokes_cache 2014/04/05 20:06:12 256 ms [e
rundob at FileSinkOperator.scala: 187

RDD API Refresher

RDDs are a distributed collection of records
rdd = spark.parallelize(range(10000), 10)

Transformations create new RDDs from existing ones
errors = rdd. filter(lambda line: “ERROR” in line)

Actions materialize a value in the user program
size = errors.count()

€databricks

RDD API Example

// Read input file input.txt
val input = sc.textFile("input.txt") INFO Server started
INFO Bound to port 8080

val tokenized = input
.map(line =>line.split(" "))
filter(words => words.size > 0) // remove empty lines

WARN Cannot find srv.conf

val counts = tokenized //frequency of log levels
.map(words => (words(0), 1)).
reduceByKey{(a,b)=>a+b,2}

€databricks

RDD API Example

// Read input file
val input = sc.textFile()

val tokenized = input
.map()
filter()

val counts = tokenized

.map().
reduceByKey| }

€databricks

Transformations

sc.textFile().map().filter().map().reduceByKey()

€databricks

DAG View of RDD’s

textFile() map() filter() map() reduceByKey()
AT T av— N ———. Y v, B de———
= = K= @[—]
| (=)

input tokenized counts

€databricks

Transformations build up a DAG, but don’t “do anything”

€databricks

Evaluation of the DAG

We mentioned “actions” a few slides ago. Let’s forget them for
a minute.

DAG’s are materialized through a method sc.runJob:
def runJob[T, U](

rdd: RDDI[T], 1. RDD to compute

partitions: Seq([Int], 2. Which partitions

func: (Iterator[T]) == U)) 3. Fn to produce results
: Array[U] = results for each part.

€databricks

Evaluation of the DAG

We mentioned “actions” a few slides ago. Let’s forget them for
a minute.

DAG’s are materialized through a method sc.runJob:
def runJob[T, U](

rdd: RDDI[T], 1. RDD to compute

partitions: Seq[Int], 2. Which partitions

func: (Iterator[T]) == U)) 3. Fn to produce results
: Array[U] = results for each part.

€databricks

Evaluation of the DAG

We mentioned “actions” a few slides ago. Let’s forget them for
a minute.

DAG’s are materialized through a method sc.runJob:
def runJob[T, U](

rdd: RDDI[T], 1. RDD to compute

partitions: Seq[Int], 2. Which partitions

func: (Iterator[T]) == U)) 3. Fn to produce results
: Array[U] = results for each part.

€databricks

for

D>
3
MAKE IT S0 |

€databricks

How runjob Works

Needs to compute my parents, parents, parents, etc all the way back
to an RDD with no dependencies (e.g. HadoopRDD).

runJob(counts)

Cratomnmon) (wramon (mmearn) (P,

8 5 4 3 ' ' 4)\
\ < . J \ = . J — []
3 s By ~ N 7
L

/

i
it
fi
{\,.

e

\ - / / \ \ J] k \ J ‘ Q y
input tokenized
€databricks

counts

Physical Optimizations

1. Certain types of transformations can be pipelined.

2. Ifdependent RDD’s have already been cached (or
persisted in a shuffle) the graph can be truncated.

Once pipelining and truncation occur, Spark produces a
a set of stages each stage is composed of tasks

€databricks

How runjob Works

Needs to compute my parents, parents, parents, etc all the way back
to an RDD with no dependencies (e.g. HadoopRDD).

rundob(counts)
PR, B v dF e e W iy, T o)
\ b]\ : J ldsl] '\ = J <]1:‘[.]
p o N~ el . [- \ [:]
: o | 4l JEp | ~/
k; _ JJ |L . A‘ \L . JJ Q y
input tokenized counts

€databricks

How runjob Works

Needs to compute my parents, parents, parents, etc all the way back
to an RDD with no dependencies (e.g. HadoopRDD).

rundob(counts)
a0 o) i —— (ek — o)
M- Ctons 1 Gt 4 (o o)
: T T == B S, 7)
input tokenized counts

€databricks

How runjob Works

Needs to compute my parents, parents, parents, etc all the way back
to an RDD with no dependencies (e.g. HadoopRDD).

T T T T T E T m T E T = \\ [,runJOb(COUHtS)\I
e L W i 5 W " '/--.-‘\:
s
| G o) (oo (o o) |
| Coons Hp{Comon oo)
I' |) f _.‘ r. 4 |
AN e e i ! i
\ " l

‘;Pbﬁngt tokenized ./ 'L counts /
atal CEE ST S TS SESSS eSS EEEE TSR EEREEEEE 02 T weEmTEwm e

Stage Graph

Fach task will: Each task will:
1. Read , \ . Read
n?)%cgop i | partial
: sums
2. Perform : :
maps and = : 2 Invoke user
filters \) : function
I \,
3. Write partial \ ® ' passed to
sSUMSs runJob.

& dstakricies Input read Shuffle write Shuffle read

Units of Physical Execution

Jobs: Work required to compute RDD in runJob.

Stages: A wave of work within a job, corresponding to
one or more pipelined RDD’s.

Tasks: A unit of work within a stage, corresponding to
one RDD partition.

Shuffle: The transfer of data between stages.

€databricks

Seeing this on your own

scala> counts.toDebugString
res84: String =
(2) ShuffledRDD[296] at reduceByKey at <console>:17
+-(3) MappedRDD[295] at map at <console>:17
| FilteredRDD[294] at filter at <console>:15
| MappedRDD[293] at map at <console>:15
| input.text MappedRDD[292] at textFile at <console>:13
| input.text HadoopRDD[291] at textFile at <console>:13

(indentations indicate a shuffle boundary)
@databricks

Example: count() action

class RDD {
def count(): Long ={
results = sc.runJob(

this, 1. RDD = self
0 until partitions.size, 2. Partitions = all partitions
it =>it.size() 3. Function = size of the partition

)

return results.sum

}
J

€databricks

Example: take(N) action

class RDD {
def take(n: Int) {
val results = new ArrayBuffer|[T]
var partition =0
while (results.size <n){
result ++= sc.runJob(this, partition, it => it.toArray)
partition = partition + 1
}
return results.take(n)
}
}

€databricks

Ty

i Apps (@ DBSSO - Open Tickets

Putting it All Together

10CaINOsT:4U4U/JODS/ JOD/ 7=V

Databricks Cloud [.] Spark (| Databricks (& Databricks Root Fol:

& Shard Listings

M S 2 Nkl =

[_] Other Bookmarks

spOli! 1.3.0-SNAPSHOT

Details for Job 0

Status: SUCCEEDED
Completed Stages: 2

Completed Stages (2)

Stage

Id Description

1 count at <console>:28

0 map at <cons :25

€databricks

Jobs Stages Storage Environment Executors

Submitted

+details 2015/02/19
21:35:56

+details 2015/02/19
21:35:56

Spark shell application

Tasks: Shuffle Shuffle
Duration Succeeded/Total Input Output Read Write
ssms (NN
0.1s 354.0B

2R 720
B

Named after action calling runJob

Named after last RDD in pipeline

Determinants of Performance in Spark

€databricks

Quantity of Data Shuttled

In general, avoiding shuffle will make your program run
faster.

1. Usethe builtin aggregateByKey() operator instead of
writing your own aggregations.

2. Filterinput earlier in the program rather than later.
3. Go tothis afternoon’s talk!

€databricks

Degree of Parallelism

> input = sc.textFile("s3n://log-files/2014/* log.gz") #matches thousands of files
> input.getNumPartitions()
35154

> lines = input.filter(lambda line: line.startswith("2014-10-17 08:")) # selective
> lines.getNumPartitions()
35154

> |ines = lines.coalesce(5).cache() # We coalesce the lines RDD before caching

> lines.getNumPartitions()
5
>>> |ines.count() # occurs on coalesced RDD

€databricks

Degree of Parallelism

If you have a huge number of mostly idle tasks (e.g. 10’s
of thousands), then it’s often good to coalesce.

If you are not using all slots in your cluster, repartition
can increase parallelism.

€databricks

Choice of Serializer

Serialization is sometimes a bottleneck when shuffling
and caching data. Using the Kryo serializer is often faster.

val conf=new SparkConf()

mon

conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")

// Be strict about class registration
conf.set("spark.kryo.registrationRequired", "true")

confregisterKryoClasses(Array(classOf[MyClass],
classOf[MyOtherClass]))

€databricks

€databricks

Cache Format

By default Spark will cache() data using MEMORY_ONLY
level, deserialized JVM objects

MEMORY_ONLY_SER can help cut down on GC

MEMORY_AND_DISK can avoid expensive
recompuations

Hardware

Spark scales horizontally, so more is better

Disk/Memory/Network balance depends on workload:
CPU intensive ML jobs vs 10 intensive ETL jobs

Good to keep executor heap size to 64GB or less (can run
multiple on each node)

€databricks

Other Pertormance Tweaks

Switching to LZF compression can improve shuftle
performance (sacrifices some robustness for massive

shuffles):
conf.set(“spark.io.compression.codec”, “|zf”)

Turn on speculative execution to help prevent stragglers

7«

conf.set(“spark.speculation”, “true”)

€databricks

Other Pertormance Tweaks

Make sure to give Spark as many disks as possible to
allow striping shuffle output

SPARK_LOCAL_DIRS in Mesos/Standalone
In YARN mode, inherits YARN’s local directories

€databricks

One Weird Trick for Great Performance

€databricks

Use Higher Level APTs!

DataFrame APIs for core processing
Works across Scala, Java, Python and R

Spark ML for machine learning

Spark SQL for structured query processing

€databricks

W | See also
Learning

Spark

LIGHTNING-FAST DATA ANALYSIS

o

Chapter 8: Tuning and
Debugging Spark.

Holden Karau, Andy Konwinski,
Patrick Wendell & Matei Zaharia

€databricks

Come to Spark Summit 2015!

Spor‘lzz,
Summit 2015

June 15-17in San Francisco

€databricks

—

Thank you.
Any questions?

€databricks

—

Extra Slides

€databricks

Internals of the RDD Interface

1) List of partitions
2) Setof dependencies on parent RDDs
3) Function to compute a partition, given parents

4) Optional partitioning info for k/v RDDs (Partitioner)

€databricks

Example: Hadoop RDD

Partitions =1 per HDFS block
Dependencies = None
compute(partition) = read corresponding HDFS block

Partitioner = None

> rdd = spark.hadoopFile(“hdfs://click_logs/”)

€databricks

Example: Filtered RDD

Partitions = parent partitions
Dependencies = a single parent
compute(partition) = call parent.compute(partition) and filter

Partitioner = parent partitioner

>filtered = rdd.filter(lambda x: x contains “ERROR”)

€databricks

€databricks

Example: Joined RDD

Partitions =number chosen by user or heuristics
Dependencies = ShuffleDependency on two or more parents
compute(partition) = read and join data from all parents

Partitioner = HashPartitioner(# partitions)

€databricks

A More Complex DAG

f
[

J

ll‘

\ 4

7~
-
rad
o’
3\
-~
.l
>
3

A More Complex DAG

€databricks

Narrow and Wide Transformations

FilteredRDD JoinedRDD
i k (" rop)

\

A 4

Partition]

€databricks

http://www.tcpdf.org

