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The Promise of the Data Lake

1. Collect 2. Storeitallin 3. Data Science &
Everything the Data Lake Machine Learning
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- Recommendation Engines
- Risk, Fraud Detection

 loT & Predictive Maintenance
« Genomics & DNA Sequencing

Garbage In Garbage Stored Garbage Out
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What does a typical
data lake project look like?
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Challenge #1: Historical Queries?
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Challenge #3: Mistakes and Failures?
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Challenge #4: Updates?
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Wasting Time & Money
Solving Systems Problems

Instead of Extracting Value From Data



Data Lake Distractions
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No atomicity means failed production jobs
leave data in corrupt state requiring tedious
recovery

No quality enforcement creates inconsistent
and unusable data

No consistency / isolation makes it almost
impossible to mix appends and reads, batch and
streaming



Let’s try it instead with
DELTA LAKE



Challenges of the Data Lake
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The 4\ DELTA LAKE Architecture
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Focus on your data flow, instead of worrying about failures.



The 4\ DELTA LAKE Architecture
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Store petabytes of data without worries of lock-in. Growing
community including Presto, Spark and more.



The 4\ DELTA LAKE Architecture
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Unifies Streaming / Batch. Convert existing jobs with minimal
modifications.



The DELTA LAKE

*Data Quality Levels *
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Delta Lake allows you to incrementally improve the
quality of your data until it is
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Dumping ground for raw data
Often with long retention (years)
* Avoid error-prone parsing
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Al & Reporting

Intermediate data with some cleanup applied.
Queryable for easy debugging!
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Clean data, ready for consumption.
Read with Spark or Presto*

*Coming Soon



The DELTA LAKE
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Streams move data through the Delta Lake
* Low-latency or manually triggered

Eliminates management of schedules and jobs



$ Kinesis

Data Lake

AAAAAA

DELTA LAKE
Bronze Silver Gold -
— . Streaming
Raw Filteréd, Cle.a ned Business-level
Ingestion Augmented Aggregates

Al & Reporting

Delta Lake also supports batch jobs
and standard DML

 Retention « UPSERTS

- Corrections *DML Comingin 0.3.0
* GDPR
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Easy to recompute when business logic changes:
* Cleartables
* Restart streams



Who is using £\ peLTA LAKE?



Used by 1000s of organizations world wide

> 1 exabyte processed last month alone
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SESSIONIZATION WITH DELTA LAKE

Single Job
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Improved reliability:
Petabyte-scale jobs

10x lower compute:
640 instances to 64!

Simpler, faster ETL:
84 jobs = 3 jobs
halved data latency
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How do | use £\ peLTA LAKE ?



Get Started with Delta using Spark APIs
Add Spark Package Maven

<dependency>
pyspark --packages i1o.delta:delta-core_2.12:0.1.0 <groupld>io.delta</groupld>
<artifactld>delta-core_2.12</artifactld>
bin/spark-shell --packages io.delta:delta-core 2.12:0.1.0 <version>0.1.0</version>
</dependency>
Instead of parquet... ...simply say de1ta
dataframe dataframe
.write .write
.format ("parquet") .format ("delta")

Csavel( W idatay .save ("/data")



Data Quality

Enforce metadata, storage, and quality declaratively.

table("warehouse")

.expect("validTimestamp", // Expectations on data quality
"timestamp > 2012-01-01 AND ..",
"fail / alert / quarantine")

*Coming Soon



Data Quality
Enforce metadata, storage, and quality declaratively.

table("warehouse")

.location(..) // Location on DBFS

.schema(...) // Optional strict schema checking
.metastoreName(...) // Registration in Hive Metastore
.description(..) // Human readable description for users

*Coming Soon



How does £\ beELTA LAKE WOTk?



Delta On Disk

my table/
_delta log/
I:ee@e@ .json
©0001. json
date=2019-01-01/
I--ncile—l.par‘que’c



Table = result of a set of actions

- hame, schema, partitioning, etc
— adds a file (with optional statistics)
- removes a file

Current Metadata, List of Files, List of Txns, Version



Implementing Atomicity

Changes to the table
are stored as
ordered, atomic
units called commits

000000 . json
000001. json



Ensuring Serializablity

Need to agree on the
order of changes, even

when there are multiple

writers. 000000 . json
User 1 User 2

000001. json
000002 .json



Solving Conflicts Optimistically

Record start version

Record reads/writes Userl <«— 00000O.json — User2
Attempt commit 600001 . json

If someone else wins,
check if anything you
read has changed.

5. Tryagain.

e e

000002 . json



Handling Massive Metadata

Large tables can have millions of files in them! How do we scale
the metadata? Use Spark for scaling!

Checkpoint



Road Map

* 0.2.0 - Released! « Rest of Q3
« S3 Support « DDL Support / Hive Metastore
« Azure Blob Store and ADLS Support +« SQL DML Support

« 0.3.0 (~July)

« UPDATE (Scala)
« DELETE (Scala)
« MERGE (Scala)
« VACUUM (Scala)



Build your own Delta Lake
at


http://www.tcpdf.org

