Making Apache Spark™
Better with Delta Lake

Michael Armbrust
W @michaelarmbrust

ZAN

DELTA LAKE

The Promise of the Data Lake

1. Collect 2. Storeitallin 3. Data Science &
Everything the Data Lake Machine Learning

26 i
ol i
- Recommendation Engines
- Risk, Fraud Detection

 loT & Predictive Maintenance
« Genomics & DNA Sequencing

Garbage In Garbage Stored Garbage Out

ZAN

What does a typical
data lake project look like?

Evolution of a Cutting-Edge Data Lake

—~ §g AAAAAA
Events — Q& kafka | h ! ”
> arka.
Streaming
7 Analytics

= -

Data Lake Al & Reporting

Evolution of a Cutting-Edge Data Lake
Events ;§8|€3fkq—>558ﬁ'(? — 11l ”

Streaming
Analytics

= -

Data Lake Al & Reporting

Challenge #1: Historical Queries?

Data Lake

— Ll

Streaming
Analytics

Al & Reporting

1» A-arch

Challenge

Events ——>§g|(0f|(0—1" F)C]ﬁ(\Z
D) t
AAAAAA a

Data Lake

2: Messy Data?

ul

Streaming
Analytics

Al & Reporting

1' A-arch

2 Validation

Challenge #3: Mistakes and Failures?

1» A-arch

\ ARAGHE ok T —"
SHENE /v§gk°fk°“_1_> pr‘"(\z 5 LIJ.LUH 2 Validation
. l | J Streaming (3, Reprocessing
AAAAAA J\Z 6 Analytics
‘Spr K C— |

Data Lake Al & Reporting

Challenge #4: Updates?

1' A-arch

. LU_UJJJ, 2 Validation

Strea m.ing 3’ Reprocessing
Analytics

4 Updates

Al & Reporting

Wasting Time & Money
Solving Systems Problems

Instead of Extracting Value From Data

Data Lake Distractions

111
L]

L]

No atomicity means failed production jobs
leave data in corrupt state requiring tedious
recovery

No quality enforcement creates inconsistent
and unusable data

No consistency / isolation makes it almost
impossible to mix appends and reads, batch and
streaming

Let’s try it instead with
DELTA LAKE

Challenges of the Data Lake

AAAAAA

Data Lake

AAAAAA

AAAAAA

1 A-arch
2 Validation
Streaming 3 Reprocessing

Analytics
4 Updates

Al & Reporting

The
§3 kafka

:& Kinesis

Data Lake

83 kafka

DELTA LAKE Architecture

(0 (@ W

=

=

Streaming
Analytics

Al & Reporting

The 4\ DELTA LAKE Architecture
| =

§3 kafka %
Streaming
s Kinesis @ Analytics
i =
DEIERE] ¢ :
g Al & Reporting

83 kafka

Focus on your data flow, instead of worrying about failures.

The 4\ DELTA LAKE Architecture
| =

§3 kafka %
Streaming
CSv,
JSON, TXT.. E %
DEIERE] ¢ :
g Al & Reporting

&3 kafka

Store petabytes of data without worries of lock-in. Growing
community including Presto, Spark and more.

The 4\ DELTA LAKE Architecture
| =

% kafka %
Streaming
l=— =
JSON, TXT..
DEIERE] ¢ :
g Al & Reporting

83 kafka

AAAAAA

Unifies Streaming / Batch. Convert existing jobs with minimal
modifications.

The DELTA LAKE

*Data Quality Levels *
&3 kafka
Bronze Silver Gold :
b Kinesis — Streaming
- @ iy = E Analytics
ERGIEEk: ngestion | Augmented . Aggregates '
AAAAAA . < e Al & Reporting
Spark
Quality

Delta Lake allows you to incrementally improve the
quality of your data until it is

$ Kinesis

Data Lake

AAAAAA

DELTA LAKE
Bronze S Gold
Raw Filteréd, Cle-a ned Business-level
Ingestion Augmented Aggregates

Dumping ground for raw data
Often with long retention (years)
* Avoid error-prone parsing

Streaming
Analytics

Al & Reporting

:ﬁ:‘:‘ Kinesis

Data Lake

AAAAAA

DELTA LAKE
Bronze Silver Gold :
— Streaming
Raw Filtered, Cl-e_aned Business-level
Ingestion Augmented Aggregates

Al & Reporting

Intermediate data with some cleanup applied.
Queryable for easy debugging!

:ﬁ:‘:‘ Kinesis

Data Lake

AAAAAA

DELTA LAKE
Bronze Silver Gold :
— Streaming
Raw Filtered, Cl-e_aned Business-level
Ingestion Augmented Aggregates

Al & Reporting

Clean data, ready for consumption.
Read with Spark or Presto*

*Coming Soon

The DELTA LAKE

Bronze

Silver Gold
S _ Streaming
= Kmesz © | g Analytics
N T Raw Filtered, Cleaned Business-level
Ingestion Augmented Aggregates

Al & Reporting

Streams move data through the Delta Lake
* Low-latency or manually triggered

Eliminates management of schedules and jobs

$ Kinesis

Data Lake

AAAAAA

DELTA LAKE
Bronze Silver Gold -
— . Streaming
Raw Filteréd, Cle.a ned Business-level
Ingestion Augmented Aggregates

Al & Reporting

Delta Lake also supports batch jobs
and standard DML

 Retention « UPSERTS

- Corrections *DML Comingin 0.3.0
* GDPR

:& Kinesis

Data Lake

AAAAAA

DELTA LAKE
Bronze Silver Gold :
. — Streaming
Raw Filtered, Cl-e_aned Business-level
Ingestion Augmented Aggregates

Al & Reporting

Easy to recompute when business logic changes:
* Cleartables
* Restart streams

Who is using £\ peLTA LAKE?

Used by 1000s of organizations world wide

> 1 exabyte processed last month alone

&l
COMCAST m

NBCUNIVERSAL o A Ir Wisuncg
CISCO.
L& niclsen agEa
“““““ Barracuda

viacom TuIrner I NVIDIA.

Fa7)
COMCAST

SESSIONIZATION WITH DELTA LAKE

Single Job
p— 64 Machines - 5
BB Auto : pf\rnue b2 Auto ?Eflrﬂ|¢e Job 3 Auto Optimize
Data Ingest :'. F:," Sessionize ':'S 5' Enrich & Optimize {':\'
e B2 s 5 > (2% S
4:‘}_—52? Streaming st A \ Sj A A 33 A = A (F\A
5 20 e TR | AK wars 0 ukda Lark
Enable Random Prefies Enable Random Prefoes
e L L L =it i
BuEELP r|r|
Streaming EJE‘JE ‘ l-:# rﬁ| Batch
loin = — Jaoin
= LJEEE_*IL__ j 7 %
—] EoFEoEL B L
Mo more Key
management
FASTER QUERIES, RELIABLE PIPELINES, 10X REDUCTION IN COMPUTE! "’O“%AS-T

Improved reliability:
Petabyte-scale jobs

10x lower compute:
640 instances to 64!

Simpler, faster ETL:
84 jobs = 3 jobs
halved data latency

27

How do | use £\ peLTA LAKE ?

Get Started with Delta using Spark APIs
Add Spark Package Maven

<dependency>
pyspark --packages i1o.delta:delta-core_2.12:0.1.0 <groupld>io.delta</groupld>
<artifactld>delta-core_2.12</artifactld>
bin/spark-shell --packages io.delta:delta-core 2.12:0.1.0 <version>0.1.0</version>
</dependency>
Instead of parquet... ...simply say de1ta
dataframe dataframe
.write .write
.format ("parquet") .format ("delta")

Csavel(W idatay .save ("/data")

Data Quality

Enforce metadata, storage, and quality declaratively.

table("warehouse")

.expect("validTimestamp", // Expectations on data quality
"timestamp > 2012-01-01 AND ..",
"fail / alert / quarantine")

*Coming Soon

Data Quality
Enforce metadata, storage, and quality declaratively.

table("warehouse")

.location(..) // Location on DBFS

.schema(...) // Optional strict schema checking
.metastoreName(...) // Registration in Hive Metastore
.description(..) // Human readable description for users

*Coming Soon

How does £\ beELTA LAKE WOTk?

Delta On Disk

my table/
_delta log/
I:ee@e@ .json
©0001. json
date=2019-01-01/
I--ncile—l.par‘que’c

Table = result of a set of actions

- hame, schema, partitioning, etc
— adds a file (with optional statistics)
- removes a file

Current Metadata, List of Files, List of Txns, Version

Implementing Atomicity

Changes to the table
are stored as
ordered, atomic
units called commits

000000 . json
000001. json

Ensuring Serializablity

Need to agree on the
order of changes, even

when there are multiple

writers. 000000 . json
User 1 User 2

000001. json
000002 .json

Solving Conflicts Optimistically

Record start version

Record reads/writes Userl <«— 00000O.json — User2
Attempt commit 600001 . json

If someone else wins,
check if anything you
read has changed.

5. Tryagain.

e e

000002 . json

Handling Massive Metadata

Large tables can have millions of files in them! How do we scale
the metadata? Use Spark for scaling!

Checkpoint

Road Map

* 0.2.0 - Released! « Rest of Q3
« S3 Support « DDL Support / Hive Metastore
« Azure Blob Store and ADLS Support +« SQL DML Support

« 0.3.0 (~July)

« UPDATE (Scala)
« DELETE (Scala)
« MERGE (Scala)
« VACUUM (Scala)

Build your own Delta Lake
at

http://www.tcpdf.org

