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About me

Work on performance
benchmarking and testing in
Spark

Co-author of spark-pertf

Wrote instrumentation/Ul
components in Spark
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This talk

Geared towards existing users

Current as of Spark 0.8.1

= databricks"



Outline

Part 1. Spark deep dive

Part 2: Overview of Ul and
INnstrumentation

Part 3: Common performance
mistakes
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Why gain a deeper
understanding?
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Let's look under the hood
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How Spark works

RDD: a parallel collection w/ partitions

User application creates RDDs,
transforms them, and runs actions

These resultin a DAG of operators
DAG is compiled into stages
Each stage is executed as a series of

tasks

= databricks"



Example

sc.textFile("/some-hdfs-data")
.map(line => line.split("\t"))
.map(parts =>
(parts[0], int(parts[1])))
reduceByKey( + , 3)
.collect()

| .gn

(I11)

textFile map reduceByKey collect
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Execution Graph
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Execution Graph
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read HDFS split
apply both maps
partial reduce
write shuffle data

read shuffle data
final reduce
send result to driver
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Stage execution

Stage 1
Task1
Task 2

Task 3

[ask 4

ooeg

Create a task for each partition in
the new RDD

Serialize task

Schedule and ship task to slaves
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Task execution

Fundamental unit of execution in
Spark

- A. Fetch input from InputFormat or a shuffle
- B. Execute the task
- C. Materialize task output as shuffle or driver result

I ' .
Fetch input > . Pipelined
' Execution
‘ Execute task >

Write output
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Spark Executor
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Summary of
Components

Tasks: Fundamental unit of work

Stage: Set of tasks that run in parallel

DAG: Logical graph of RDD operations

RDD: Parallel dataset with partitions
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Demo of perf Ul
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Where can you
have problems?

1. Scheduling and launching
tasks

2. Execution of tasks
3. Writing data between stages

4. Collecting results
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1. Scheduling and
launching tasks
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Serialized task is large
due to a closure

hash_map = some_massive _hash_map()

rdd.map(lambda x: hash_map(x))
.count_by value()

Detecting: Spark will warn you! (starting in 0.9...)
Fixing

Use broadcast variables for large object
Make your large object into an RDD
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Large number of “"empty”
tasks due to selective filter

rdd = sc.textFile("s3n://bucket/2013-data”)
.map(lambda x: x.split(“\t"))
filter(lambda parts: parts[0] == "2013-10-17")
filter(lambda parts: parts[1] == "19:00")

rdd.map(lambda parts: (parts[2], parts[3]).reduceBy...

Detecting Many short-lived (< 20ms) tasks

Fixing

Use coalesce or repartition operator to shrink RDD
number of partitions after filtering:

rdd.coalesce(30).map(lambda parts: (parts[2]...
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2. Execution of Tasks
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Tasks with high per-
record overhead

rdd.map(lambda Xx:
conn = new_mongo _db cursor()
conn.write(str(x))
conn.close())

Detecting: Task run time is high
Fixing
Use mapPartitions or mapWith (scala)
rdd.mapPartitions(lambda records:
conn = new_mong_db_cursor()
[conn.write(str(x)) for X in records]
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Skew between tasks

Detecting
Stage response time dominated by a few slow tasks

Fixing

Data skew: poor choice of partition key

-> Consider different way of parallelizing the problem
- Can also use intermediate partial aggregations

Worker skew: some executors slow/flakey nodes

- Set spark.speculation to true
- Remove flakey/slow nodes over time
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3. Writing data
between stages

= databri

cks’



Not having enough
buffer cache

spark writes out shuffle data to OS-buffer cache

Detecting
tasks spend a lot of time writing shuffle data

Fixing
if running large shuffles on large heaps, allow several GB
for buffer cash

rule of thumb, leave 20% of memory free for OS and
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Not setting
spark.local.dir

spark.local.dir is where shuffle files are written
ideally a dedicated disk or set of disks
spark.local.dir=/mnt1/spark,/mnt2/spark,/mnt3/spark

mount drives with noattime, nodiratime
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Not setting the
number of reducers

Default behavior: inherits # of reducers from
parent RDD

Too many reducers:

- Task launching overhead becomes an
iIssue (will see many small tasks)

Too few reducers:

= Limits parallelism in cluster
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4. Collecting results
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Collecting massive
result sets

sc.textFile(“/big/hdfs/file/”).collect()

Fixing
If processing, push computation into
Spark

If storing, write directly to parallel
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Advanced Profiling

JVM Utilities:

jstack <pid> jvm stack trace
Jjmap —histo:live <pid> heap summary

System Ultilities:

dstat |0 and cpu stats
lostat disk stats
Isof —p <pid> f{racks open files
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Conclusion

Spark 0.8 provides good tools for
monitoring performance

Understanding Spark concepts
provides a major advantage in
perf debugging
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Questions?
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