Spark Performance

Patrick Wendell
Databricks

Spark == databricks’

About me

Work on performance
benchmarking and testing in
Spark

Co-author of spark-pertf

Wrote instrumentation/Ul
components in Spark

= databricks"

This talk

Geared towards existing users

Current as of Spark 0.8.1

= databricks"

Outline

Part 1. Spark deep dive

Part 2: Overview of Ul and
INnstrumentation

Part 3: Common performance
mistakes

= databricks"

Why gain a deeper
understanding?

(patrick, $24), (matei, $30), (patrick, $1), (aaron, $23), L-RDD_|

)

' (aaron, $2), (reynold, $10), (aaron, $10).....

5
4

rdd

locally before
shuffling == databricks’

Let's look under the hood

-'1

== databricks"

How Spark works

RDD: a parallel collection w/ partitions

User application creates RDDs,
transforms them, and runs actions

These resultin a DAG of operators
DAG is compiled into stages
Each stage is executed as a series of

tasks

= databricks"

Example

sc.textFile("/some-hdfs-data")
.map(line => line.split("\t"))
.map(parts =>
(parts[0], int(parts[1])))
reduceByKey(+ , 3)
.collect()

| .gn

(I11)

textFile map reduceByKey collect

== databricks"

Execution Graph

e I e

7
-

collect

collect

h_—_—_—_

Stage 2

. >
Q) Q)
- %
0 N
; ;
3 =
5s. o
@ el
- 5
|

i

e DI_
m m |
= £
|

I

i

0 O |
m _d_
- -
!

I

ai |

e |
roif

\ pad

M v pasresismii P

textFile

databricks”

Execution Graph

- @I $#IE S S S -

collect

T O O O O O . . O N O . O . . Jl..________..r\"

read HDFS split
apply both maps
partial reduce
write shuffle data

read shuffle data
final reduce
send result to driver

== databricks"

Stage execution

Stage 1
Task1
Task 2

Task 3

[ask 4

ooeg

Create a task for each partition in
the new RDD

Serialize task

Schedule and ship task to slaves

= databricks"

Task execution

Fundamental unit of execution in
Spark

- A. Fetch input from InputFormat or a shuffle
- B. Execute the task
- C. Materialize task output as shuffle or driver result

I ' .
Fetch input > . Pipelined
' Execution
‘ Execute task >

Write output

= databricks"

Spark Executor

!
Fetch iﬂﬂut> Fetch innut> Fetch innut:>
| Executetask> : | Executetask> | Executetask>
i
|

Core

Write output Write output Write output

Fetch input > Fetch input >
Core

[

!

' | Execute task > | Execute task >
2 4 >

; :

N
([N o
N

| Write output | Write output

R

Fetch input > : Fetch input >

COI‘E‘ : Execute task > i : Execute task >
|
3 Write output > I Write output
|

N

= databricks"

Summary of
Components

Tasks: Fundamental unit of work

Stage: Set of tasks that run in parallel

DAG: Logical graph of RDD operations

RDD: Parallel dataset with partitions

= databricks"

Demo of perf Ul

= databri

cks’

Where can you
have problems?

1. Scheduling and launching
tasks

2. Execution of tasks
3. Writing data between stages

4. Collecting results

= databricks"

1. Scheduling and
launching tasks

= databri

cks’

Serialized task is large
due to a closure

hash_map = some_massive _hash_map()

rdd.map(lambda x: hash_map(x))
.count_by value()

Detecting: Spark will warn you! (starting in 0.9...)
Fixing

Use broadcast variables for large object
Make your large object into an RDD

= databricks"

Large number of “"empty”
tasks due to selective filter

rdd = sc.textFile("s3n://bucket/2013-data”)
.map(lambda x: x.split(“\t"))
filter(lambda parts: parts[0] == "2013-10-17")
filter(lambda parts: parts[1] == "19:00")

rdd.map(lambda parts: (parts[2], parts[3]).reduceBy...

Detecting Many short-lived (< 20ms) tasks

Fixing

Use coalesce or repartition operator to shrink RDD
number of partitions after filtering:

rdd.coalesce(30).map(lambda parts: (parts[2]...
= databricks

2. Execution of Tasks

= databricks"

Tasks with high per-
record overhead

rdd.map(lambda Xx:
conn = new_mongo _db cursor()
conn.write(str(x))
conn.close())

Detecting: Task run time is high
Fixing
Use mapPartitions or mapWith (scala)
rdd.mapPartitions(lambda records:
conn = new_mong_db_cursor()
[conn.write(str(x)) for X in records]

e == databricks’

Skew between tasks

Detecting
Stage response time dominated by a few slow tasks

Fixing

Data skew: poor choice of partition key

-> Consider different way of parallelizing the problem
- Can also use intermediate partial aggregations

Worker skew: some executors slow/flakey nodes

- Set spark.speculation to true
- Remove flakey/slow nodes over time

= databricks"

3. Writing data
between stages

= databri

cks’

Not having enough
buffer cache

spark writes out shuffle data to OS-buffer cache

Detecting
tasks spend a lot of time writing shuffle data

Fixing
if running large shuffles on large heaps, allow several GB
for buffer cash

rule of thumb, leave 20% of memory free for OS and

Gaches = databricks"

Not setting
spark.local.dir

spark.local.dir is where shuffle files are written
ideally a dedicated disk or set of disks
spark.local.dir=/mnt1/spark,/mnt2/spark,/mnt3/spark

mount drives with noattime, nodiratime

= databricks"

Not setting the
number of reducers

Default behavior: inherits # of reducers from
parent RDD

Too many reducers:

- Task launching overhead becomes an
iIssue (will see many small tasks)

Too few reducers:

= Limits parallelism in cluster
= databricks

4. Collecting results

= databricks"

Collecting massive
result sets

sc.textFile(“/big/hdfs/file/”).collect()

Fixing
If processing, push computation into
Spark

If storing, write directly to parallel
storage = databricks’

Advanced Profiling

JVM Utilities:

jstack <pid> jvm stack trace
Jjmap —histo:live <pid> heap summary

System Ultilities:

dstat |0 and cpu stats
lostat disk stats
Isof —p <pid> f{racks open files

= databricks"

Conclusion

Spark 0.8 provides good tools for
monitoring performance

Understanding Spark concepts
provides a major advantage in
perf debugging

= databricks"

Questions?

= databricks"

